
INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC01 1999 Jun 17

SAA7325

CONTENTS

1	FEATURES
2	GENERAL DESCRIPTION
3	ORDERING INFORMATION
4	QUICK REFERENCE DATA
5	BLOCK DIAGRAM
6	PINNING
7	FUNCTIONAL DESCRIPTION
7.1	Decoder part
7.1.1	Principal operational modes of the decoder
7.1.2	Decoding speed and crystal frequency
7.1.3	Lock-to-disc mode
7.1.4	Standby modes
7.2	Crystal oscillator
7.3	Data slicer and clock regenerator
7.4	Demodulator
7.4.1 7.4.2	Frame sync protection EFM demodulation
7.4.2 7.5	Subcode data processing
7.5.1	Q-channel processing
7.5.2	EIAJ 3 and 4-wire subcode (CD graphics)
	interfaces
7.5.3	V4 subcode interface
7.6	FIFO and error corrector
7.6.1	Flags output (CFLG)
7.7	Audio functions
7.7.1	De-emphasis and phase linearity
7.7.2	Digital oversampling filter
7.7.3 7.7.4	Concealment
7.7.5	Mute, full-scale, attenuation and fade Peak detector
7.8	DAC interface
7.8.1	Internal bitstream digital-to-analog converter
-	(DAC)
7.8.2	External DAC interface
7.9	EBU interface
7.9.1	Format
7.10	KILL circuit
7.11	Audio features off
7.12	The VIA interface
7.13 7.13.1	Spindle motor control
7.13.1	Motor output modes Spindle motor operating modes
7.13.3	Loop characteristics
7.13.4	FIFO overflow

7.14	Servo part
7.14.1	Diode signal processing
7.14.2	Signal conditioning
7.14.3	Focus servo system
7.14.4	Radial servo system
7.14.5	Off-track counting
7.14.6	Defect detection
7.14.7	Off-track detection
7.14.8	High-level features
7.14.9	Driver interface
7.14.10	Laser interface
7.14.11	Radial shock detector
7.15	Microcontroller interface
7.15.1	Microcontroller interface (4-wire bus mode)
7.15.2	Microcontroller interface (I ² C-bus mode)
7.15.3	Decoder registers and shadow registers
7.15.4	Summary of functions controlled by decoder registers 0 to F
7.15.5	Summary of functions controlled by shadow registers
7.15.6	Summary of servo commands
7.15.7	Summary of servo command parameters
8	LIMITING VALUES
9	CHARACTERISTICS
10	OPERATING CHARACTERISTICS
	(SUBCODE INTERFACE TIMING)
11	OPERATING CHARACTERISTICS (I ² S-BUS TIMING)
12	OPERATING CHARACTERISTICS (MICROCONTROLLER INTERFACE TIMING)
13	APPLICATION INFORMATION
14	PACKAGE OUTLINE
15	SOLDERING
15.1	Introduction to soldering surface mount packages
15.2	Reflow soldering
15.3	Wave soldering
15.4	Manual soldering
15.5	Suitability of surface mount IC packages for
10.0	wave and reflow soldering methods
16	DEFINITIONS
17	LIFE SUPPORT APPLICATIONS
18	PURCHASE OF PHILIPS I ² C COMPONENTS
-	

SAA7325

Re**Writable**

1 FEATURES

- Single speed operation
- Integrated bitstream DAC with differential outputs, operating at 96f_s with 3rd-order noise shaper; typical performance of –90 dB signal-to-noise ratio
- Separate serial input and output interfaces allow data 'loopback' mode for use of onboard DAC with external Electronic Shock Absorption (ESA) systems
- Lock-to-disc mode
- Full error correction strategy, t = 2 and e = 4
- Full CD graphics interface
- All standard decoder functions implemented digitally on chip
- FIFO overflow concealment for rotational shock resistance
- Digital audio interface (EBU), audio and data
- 2 and 4 times oversampling integrated digital filter, including ${\rm f}_{\rm s}$ mode
- Audio data peak level detection
- Kill interface for external DAC deactivation during digital silence
- All SAA737x (CD7) digital servo and high-level functions
- Low focus noise
- Same playability performance as SAA737x (CD7)

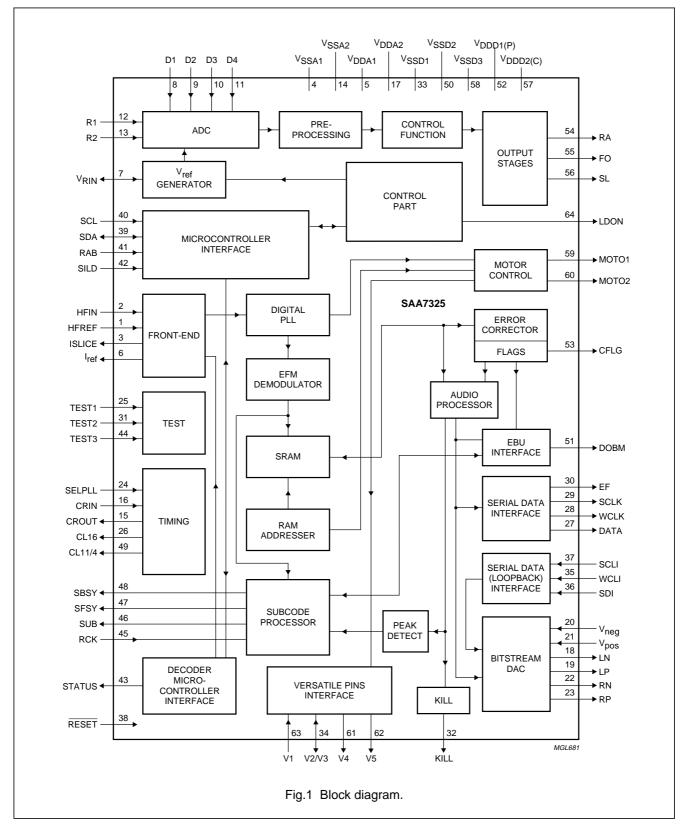
3 ORDERING INFORMATION

- Automatic closed-loop gain control available for focus and radial loops
- Pulsed sledge support
- Electronic damping of fast radial actuator during long jump
- Microcontroller loading LOW
- · High-level servo control option
- · High-level mechanism monitor
- Communication may be via l²C-bus or TDA1301/SAA7345 compatible bus
- On-chip clock multiplier allows the use of 8.4672, 16.9344 or 33.8688 MHz crystals or ceramic resonators.

2 GENERAL DESCRIPTION

The SAA7325 (CD10) is a single chip combining the functions of a CD decoder, digital servo and bitstream DAC. The decoder/servo part is based on the SAA737x (CD7) and is software compatible with this design. Extra functions are controlled by use of 'shadow' registers (see Section 7.15.3).

Supply of this Compact Disc IC does not convey an implied license under any patent right to use this IC in any Compact Disc application.


TYPE	PACKAGE						
NUMBER	NAME	DESCRIPTION	VERSION				
SAA7325H	QFP64	plastic quad flat package; 64 leads (lead length 1.6 mm); body $14 \times 14 \times 2.7$ mm	SOT393-1				

Digital servo processor and Compact Disc decoder with integrated DAC (CD10)

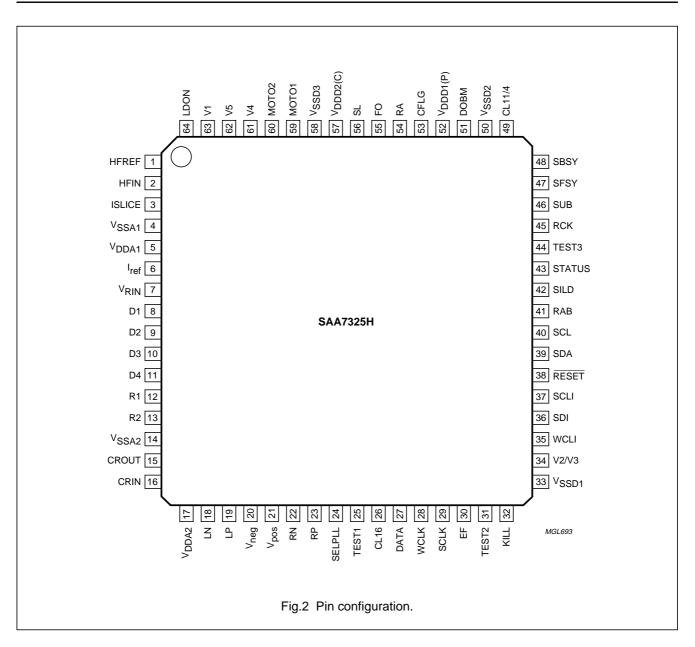
4 QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{DD}	supply voltage		3.0	3.3	3.6	V
I _{DD}	supply current		-	20	-	mA
f _{xtal}	crystal frequency		8	8.4672	35	MHz
T _{amb}	ambient temperature		-10	_	+70	°C
T _{stg}	storage temperature		-55	_	+125	°C
S/N _{DAC}	onboard DAC signal-to-noise ratio	1 kHz; 1f _s ; see Figs. 38 and 39	-85	-90	-	dB

5 BLOCK DIAGRAM

SAA7325

6 PINNING


SYMBOL	PIN	DESCRIPTION
HFREF	1	comparator common mode input
HFIN	2	comparator signal input
ISLICE	3	current feedback output from data slicer
V _{SSA1}	4 ⁽¹⁾	analog ground 1
V _{DDA1}	5 ⁽¹⁾	analog supply voltage 1
I _{ref}	6	reference current output pin
V _{RIN}	7	reference voltage for servo ADCs
D1	8	unipolar current input 1 (central diode signal input)
D2	9	unipolar current input 2 (central diode signal input)
D3	10	unipolar current input 3 (central diode signal input)
D4	11	unipolar current input 4 (central diode signal input)
R1	12	unipolar current input 1 (satellite diode signal input)
R2	13	unipolar current input 2 (satellite diode signal input)
V _{SSA2}	14(1)	analog ground 2
CROUT	15	crystal/resonator output
CRIN	16	crystal/resonator input
V _{DDA2}	17 ⁽¹⁾	analog supply voltage 2
LN	18	DAC left channel differential negative output
LP	19	DAC left channel differential positive output
V _{neg}	20	DAC negative reference input
V _{pos}	21	DAC positive reference input
RN	22	DAC right channel differential negative output
RP	23	DAC right channel differential positive output
SELPLL	24	selects whether internal clock multiplier PLL is used
TEST1	25	test control input 1 (this pin should be tied LOW)
CL16	26	16.9344 MHz system clock output
DATA	27	serial d4(1) data output (3-state)
WCLK	28	word clock output (3-state)
SCLK	29	serial bit clock output (3-state)
EF	30	C2 error flag output (3-state)
TEST2	31	test control input 2 (this pin should be tied LOW)
KILL	32	kill output (programmable; open-drain)
V _{SSD1}	33 ⁽¹⁾	digital ground 1
V2/V3	34	versatile I/O: versatile input 2 or versatile output 3 (open-drain)
WCLI	35	word clock input (for data loopback to DAC)
SDI	36	serial data input (for data loopback to DAC)
SCLI	37	serial bit clock input (for data loopback to DAC)
RESET	38	power-on reset input (active LOW)
SDA	39	microcontroller interface data I/O line (open-drain output)
SCL	40	microcontroller interface clock line input

SAA7325

SYMBOL	PIN	DESCRIPTION
RAB	41	microcontroller interface R/\overline{W} and load control line input (4-wire bus mode)
SILD	42	microcontroller interface \overline{R}/W and load control line input (4-wire bus mode)
STATUS	43	servo interrupt request line/decoder status register output (open-drain)
TEST3	44	test control input 3 (this pin should be tied LOW)
RCK	45	subcode clock input
SUB	46	P-to-W subcode bits output (3-state)
SFSY	47	subcode frame sync output (3-state)
SBSY	48	subcode block sync output (3-state)
CL11/4	49	11.2896 or 4.2336 MHz (for microcontroller) clock output
V _{SSD2}	50 ⁽¹⁾	digital ground 2
DOBM	51	bi-phase mark output (externally buffered; 3-state)
V _{DDD1(P)}	52 ⁽¹⁾	digital supply voltage 1 for periphery
CFLG	53	correction flag output (open-drain)
RA	54	radial actuator output
FO	55	focus actuator output
SL	56	sledge control output
V _{DDD2(C)}	57 ⁽¹⁾	digital supply voltage 2 for core
V _{SSD3}	58 ⁽¹⁾	digital ground 3
MOTO1	59	motor output 1; versatile (3-state)
MOTO2	60	motor output 2; versatile (3-state)
V4	61	versatile output 4
V5	62	versatile output 5
V1	63	versatile input 1
LDON	64	laser drive on output (open-drain)

Note

1. All supply pins must be connected to the same external power supply voltage.

7 FUNCTIONAL DESCRIPTION

7.1 Decoder part

7.1.1 PRINCIPAL OPERATIONAL MODES OF THE DECODER

The decoding part supports a full audio specification at single-speed (n = 1). A simplified data flow through the decoder part is illustrated in Fig.7.

7.1.2 DECODING SPEED AND CRYSTAL FREQUENCY

The SAA7325 is a single-speed decoding device, with an internal Phase-Locked Loop (PLL) clock multiplier allowing a choice of different crystals and oscillators to be used

(see Section 7.2). The range of crystal and oscillator frequencies possible is controlled via decoder register B and shown in Table 1. The MSB of decoder register B must be set to logic 0.

The internal clock multiplier is controlled by SELPLL, and should only be used if a 8.4672 or 16.9344 MHz crystal, ceramic resonator or external clock is present.

Digital servo processor and Compact Disc decoder with integrated DAC (CD10)

7.1.3 LOCK-TO-DISC MODE

Although nominally a single-speed device, for electronic shock absorption applications the SAA7325 can be put into lock-to-disc mode. This allows Constant Angular Velocity (CAV) disc playback with varying input data rates from the inside-to-outside of the disc. In the lock-to-disc mode, the FIFO is blocked and the decoder will adjust its output data rate to the disc speed. Hence, the frequency of the I²S-bus (WCLK and SCLK) clocks are dependent on the disc speed. In the lock-to-disc mode there is a limit on the maximum variation in disc speed that the SAA7325 will follow. Disc speeds must always be within 25% to 100% range of their nominal value. The lock-to-disc mode is enabled/disabled by decoder register E.

7.1.4 STANDBY MODES

The SAA7325 may be placed in two standby modes selected by decoder register B (it should be noted that the device core is still active):

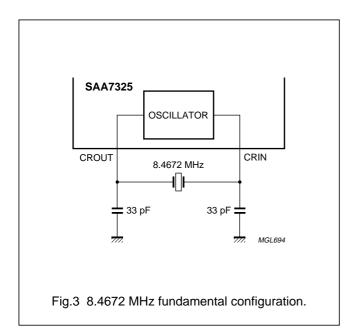
- Standby 1: 'CD-STOP' mode; most I/O functions are switched off
- Standby 2: 'CD-PAUSE' mode; audio output features are switched off, but the motor loop, the motor output and the subcode interfaces remain active; this is also called a 'Hot Pause'.

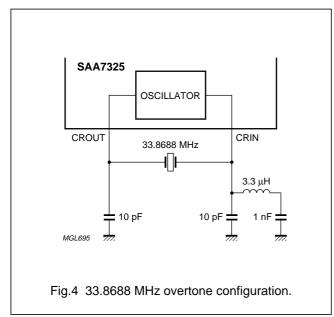
In the standby modes the various pins will have the following values:

- MOTO1 and MOTO2: put in high-impedance, PWM mode (standby 1 and reset: operating in standby 2); put in high-impedance, PDM mode (standby 1 and reset: operating in standby 2)
- SCL and SDA: no interaction; normal operation continues
- SCLK, WCLK, DATA, EF and DOBM: 3-state in both standby modes; normal operation continues after reset
- CRIN, CROUT, CL16 and CL11/4: no interaction; normal operation continues
- V1, V2/V3, V4, V5 and CFLG: no interaction; normal operation continues.

REGISTER B ⁽¹⁾		CRYSTAL FREQUENCY (MHz)			CL11 FREQUENCY (MHz) ⁽²⁾
	SELFLL	33.8688	16.9344	8.4672	
00XX	0	\checkmark	_	_	11.2896
00XX	1	_	_	\checkmark	11.2896
01XX	0	_	\checkmark	-	5.6448
01XX	1	_	\checkmark	_	11.2896

Table 1Operating frequencies


Notes


- 1. The MSB of register B **must** be held at 0 (i.e. 0XXX).
- 2. The CL11 output is always a 5.6448 MHz clock if a 16.9344 MHz external clock is used and SELPLL = 0. CL11 is available on the CL11/4 output, enabled by programming shadow register 3 (see Section 7.15.3).

Digital servo processor and Compact Disc decoder with integrated DAC (CD10)

7.2 Crystal oscillator

The crystal oscillator is a conventional 2-pin design operating between 8 and 35 MHz. This oscillator is capable of operating with ceramic resonators and with both fundamental and third overtone crystals. External components should be used to suppress the fundamental output of the third overtone crystals as shown in Figs 3 and 4. Typical oscillation frequencies required are 8.4672, 16.9344 or 33.8688 MHz depending on the internal clock settings used and whether or not the clock multiplier is enabled (see Table 1).

7.3 Data slicer and clock regenerator

The SAA7325 has an integrated slice level comparator which can be clocked by the crystal frequency clock, or 4 times the crystal frequency clock (if SELPLL is set HIGH while using a 16.9344 MHz crystal and register 4 is set to 0XXX), or 8 times the crystal frequency clock (if SELPLL is set HIGH while using an 8.4672 MHz crystal, and register 4 is set to 0XXX). The slice level is controlled by an internal current source applied to an external capacitor under the control of the Digital Phase-Locked Loop (DPLL).

Regeneration of the bit clock is achieved with an internal fully digital PLL. No external components are required and the bit clock is not output. The PLL has two registers (8 and 9) for selecting bandwidth and equalization. The PLL response is shown in Fig.5.

For certain applications an off-track input is necessary. This is internally connected from the servo part (its polarity can be changed by the foc_parm1 parameter), but may be input via the V1 pin if selected by register C. If this flag is HIGH, the SAA7325 will assume that its servo part is following on the wrong track, and will flag all incoming HF data as incorrect.

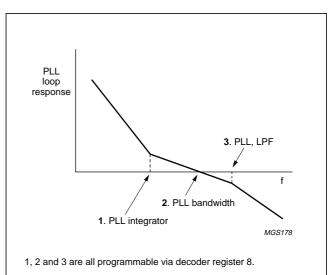
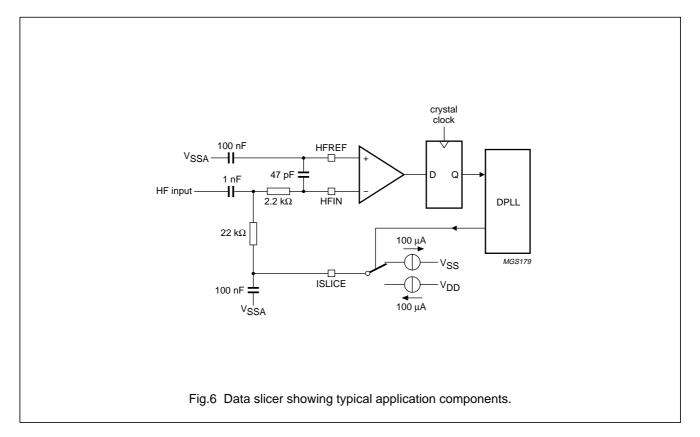



Fig.5 Digital PLL loop response.

SAA7325

7.4 Demodulator

7.4.1 FRAME SYNC PROTECTION

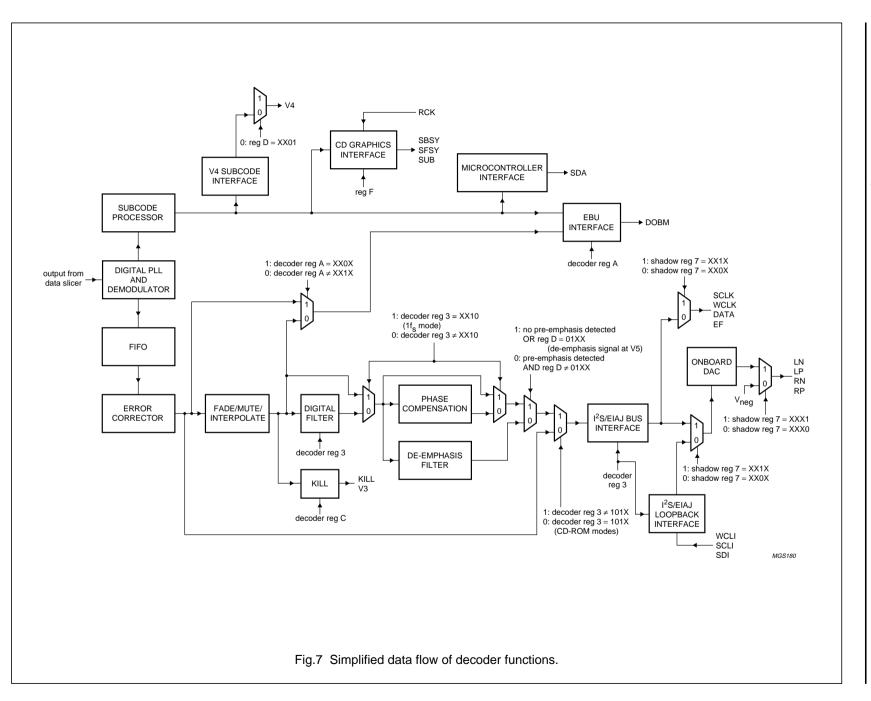
A double timing system is used to protect the demodulator from erroneous sync patterns in the serial data. The master counter is only reset if:

- A sync coincidence is detected; sync pattern occurs 588 ±1 EFM clocks after the previous sync pattern
- A new sync pattern is detected within ±6 EFM clocks of its expected position.

The sync coincidence signal is also used to generate the PLL lock signal, which is active HIGH after 1 sync coincidence found, and reset LOW if during 61 consecutive frames no sync coincidence is found. The PLL lock signal can be accessed via the SDA or STATUS pins selected by decoder registers 2 and 7.

Also incorporated in the demodulator is a Run Length 2 (RL2) correction circuit. Every symbol detected as RL2 will be pushed back to RL3. To do this, the phase error of both edges of the RL2 symbol are compared and the correction is executed at the side with the highest error probability.

7.4.2 EFM DEMODULATION


The 14-bit EFM data and subcode words are decoded into 8-bit symbols.

Philips Semiconductors

Product specification

Digital servo processor and Compact Disc decoder with integrated DAC (CD10)

SAA7325

1999 Jun 17

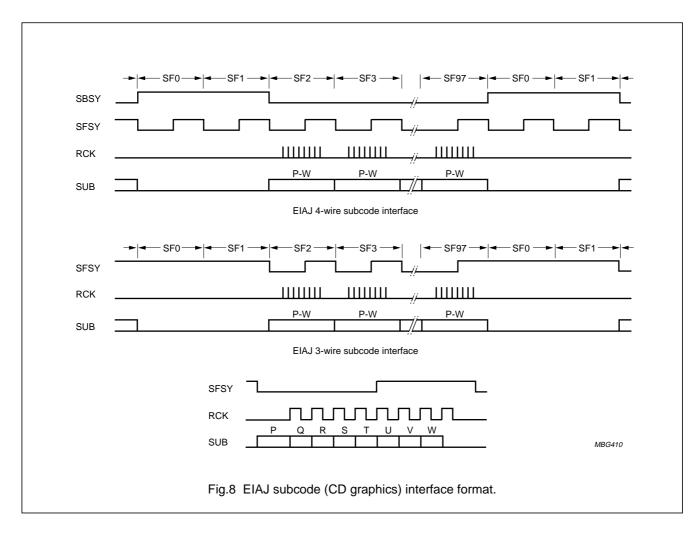
_

12

7.5 Subcode data processing

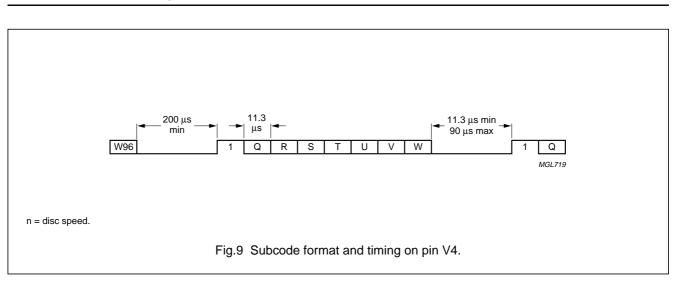
7.5.1 Q-CHANNEL PROCESSING

The 96-bit Q-channel word is accumulated in an internal buffer. The last 16 bits are used internally to perform a Cyclic Redundancy Check (CRC). If the data is good, the SUBQREADY-I signal will go LOW. SUBQREADY-I can be read via the SDA or STATUS pins, selected via decoder register 2. Good Q-channel data may be read from SDA.


7.5.2 EIAJ 3 AND 4-WIRE SUBCODE (CD GRAPHICS) INTERFACES

Data from all the subcode channels (P-to-W) may be read via the subcode interface, which conforms to EIAJ CP-2401. The interface is enabled and configured as either a 3 or 4-wire interface via decoder register F. The subcode interface output formats are illustrated in Fig.8, where the RCK signal is supplied by another device such as a CD graphics decoder.

7.5.3 V4 SUBCODE INTERFACE


Data of subcode channels, Q-to-W, may be read via pin V4 if selected via decoder register D. The format is similar to RS232 and is illustrated in Fig.9. The subcode sync word is formed by a pause of 200 μ s minimum. Each subcode byte starts with a logic 1 followed by 7 bits (Q-to-W). The gap between bytes is variable between 11.3 and 90 μ s.

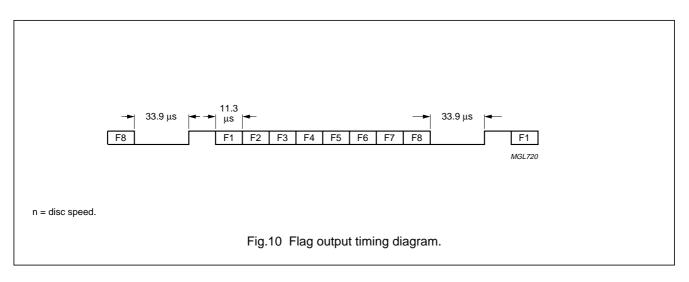
The subcode data is also available in the EBU output (DOBM) in a similar format.

•

Digital servo processor and Compact Disc decoder with integrated DAC (CD10)

7.6 FIFO and error corrector

The SAA7325 has a ± 8 frame FIFO. The error corrector is a t = 2, e = 4 type, with error corrections on both C1 (32 symbol) and C2 (28 symbol) frames. Four symbols are used from each frame as parity symbols. This error corrector can correct up to two errors on the C1 level and up to four errors on the C2 level.


The error corrector also contains a flag processor. Flags are assigned to symbols when the error corrector cannot ascertain if the symbols are definitely good. C1 generates output flags which are read after (de-interleaving) by C2, to help in the generation of C2 output flags.

The C2 output flags are used by the interpolator for concealment of uncorrectable errors. They are also output via the EBU signal (DOBM). The EF output will flag bytes in error in both audio and CD-ROM modes.

7.6.1 FLAGS OUTPUT (CFLG)

The flags output pin CFLG shows the status of the error corrector and interpolator and is updated every frame (7.35 \times n kHz). In the SAA7325 chip a 1-bit flag is present on the CFLG pin as illustrated in Fig.10. This signal shows the status of the error corrector and interpolator.

The first flag bit, F1, is the absolute time sync signal, the FIFO-passed subcode sync and relates the position of the subcode sync to the audio data (DAC output). This flag may also be used in a super FIFO or in the synchronization of different players. The output flags can be made available at bit 4 of the EBU data format (LSB of the 24-bit data word), if selected by decoder register A.

Digital servo processor and Compact Disc decoder with integrated DAC (CD10)

F1	F2	F3	F4	F5	F6	F7	F8	DESCRIPTION
0	Х	X	Х	Х	X	X	X	no absolute time sync
1	Х	Х	Х	Х	Х	Х	Х	absolute time sync
Х	0	0	Х	Х	Х	Х	Х	C1 frame contained no errors
Х	0	1	Х	Х	Х	Х	Х	C1 frame contained 1 error
Х	1	0	Х	Х	Х	Х	Х	C1 frame contained 2 errors
Х	1	1	Х	Х	Х	Х	Х	C1 frame uncorrectable
Х	Х	Х	0	0	Х	Х	0	C2 frame contained no errors
Х	Х	Х	0	0	Х	Х	1	C2 frame contained 1 error
Х	Х	Х	0	1	Х	Х	0	C2 frame contained 2 errors
Х	Х	Х	0	1	Х	Х	1	C2 frame contained 3 errors
Х	Х	Х	1	0	Х	Х	0	C2 frame contained 4 errors
Х	Х	Х	1	1	Х	Х	1	C2 frame uncorrectable
Х	Х	Х	Х	Х	0	0	Х	no interpolations
Х	Х	Х	Х	Х	0	1	Х	at least one 1-sample interpolation
Х	Х	Х	Х	Х	1	0	Х	at least one hold and no interpolations
Х	Х	Х	Х	Х	1	1	Х	at least one hold and one 1-sample interpolation

Table 2 Output flags

7.7 Audio functions

7.7.1 DE-EMPHASIS AND PHASE LINEARITY

When pre-emphasis is detected in the Q-channel subcode, the digital filter automatically includes a de-emphasis filter section. When de-emphasis is not required, a phase compensation filter section controls the phase of the digital oversampling filter to $\leq \pm 1^{\circ}$ within the band 0 to 16 kHz. With de-emphasis the filter is not phase linear.

If the de-emphasis signal is set to be available at V5, selected via decoder register D, then the de-emphasis filter is bypassed.

7.7.2 DIGITAL OVERSAMPLING FILTER

For optimizing performance with an external DAC, the SAA7325 contains a 2 to 4 times oversampling IIR filter. The filter specification of the 4 times oversampling filter is given in Table 3.

These attenuations do not include the sample-and-hold at the external DAC output or the DAC post filter. When using the oversampling filter, the output level is scaled -0.5 dB down to avoid overflow on full-scale sine wave inputs (0 to 20 kHz).

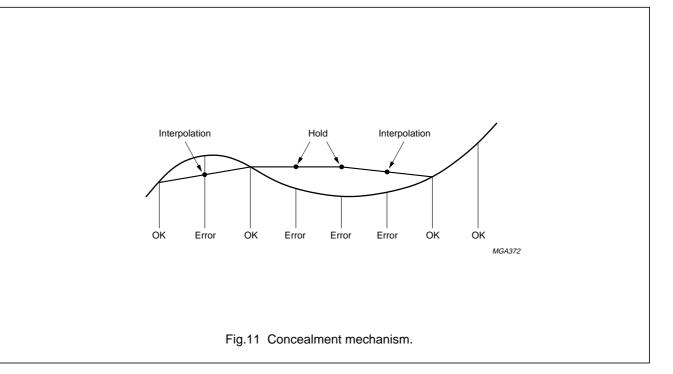
Table 3 Filter specification

PASS BAND	STOP BAND	ATTENUATION
0 to 9 kHz	_	≤0.001 dB
19 to 20 kHz	-	≤0.03 dB
—	24 kHz	≥25 dB
—	24 to 27 kHz	≥38 dB
—	27 to 35 kHz	≥40 dB
—	35 to 64 kHz	≥50 dB
-	64 to 68 kHz	≥31 dB
_	68 kHz	≥35 dB
_	69 to 88 kHz	≥40 dB

7.7.3 CONCEALMENT

A 1-sample linear interpolator becomes active if a single sample is flagged as erroneous but cannot be corrected. The erroneous sample is replaced by a level midway between the preceding and following samples. Left and right channels have independent interpolators. If more than one consecutive non-correctable sample is found, the last good sample is held. A 1-sample linear interpolation is then performed before the next good sample (see Fig.11).

In CD-ROM modes (i.e. the external DAC interface is selected to be in a CD-ROM format) concealment is not executed.


7.7.4 MUTE, FULL-SCALE, ATTENUATION AND FADE

A digital level controller is present on the SAA7325 which performs the functions of soft mute, full-scale, attenuation and fade; these are selected via decoder register 0:

- Mute: signal reduced to 0 in a maximum of 128 steps; 3 ms
- Attenuate: signal scaled by -12 dB
- Full-scale: ramp signal back to 0 dB level; from mute takes 3 ms
- Fade: activates a 128 stage counter which allows the signal to be scaled up/down by 0.07 dB steps
 - 128 = full-scale
 - 120 = -0.5 dB (i.e. full-scale if oversampling filter used)
 - 32 = −12 dB
 - 0 = mute.

7.7.5 PEAK DETECTOR

The peak detector measures the highest audio level (absolute value) on positive peaks for left and right channels. The 8 most significant bits are output in the Q-channel data in place of the CRC bits. Bits 81 to 88 contain the left peak value (bit 88 = MSB) and bits 89 to 96 contain the right peak value (bit 96 = MSB). The values are reset after reading Q-channel data via SDA.

SAA7325

7.8 DAC interface

7.8.1 INTERNAL BITSTREAM DIGITAL-TO-ANALOG CONVERTER (DAC)

The onboard bitstream DAC operates at a clock frequency of $96f_s$ and is designed for operation with an audio input at $1f_s$. Optimum performance is dependent on the application circuit used and careful consideration should be given to the recommended application circuits shown in Figs. 38 and 39. The onboard DAC is controlled from shadow register 7 (see Section 7.15.3 for definition of shadow registers). This shadow register controls routing of data into the onboard DAC and also controls the DAC output pins, which can be held at zero when the onboard DAC is not required; see Table 4.

Table 4 Shadow register

SHADEN	SHADOW ADDRESS	REGISTER	DATA	FUNCTION	RESET
1	0111 (7H)	control of	XXX0	hold onboard DAC outputs at zero	reset
		onboard DAC	XXX1	enable onboard DAC outputs	-
			XX0X	use external DAC or route audio data into onboard DAC (loopback mode)	reset
			XX1X	route audio data into onboard DAC (non-loopback mode)	-

Audio data from the decoder part of SAA7325 can be routed as described in the following two subsections:

7.8.1.1 Use onboard DAC

In this mode, shadow register 7 should be set to XX11. This routes audio data from the decoder part of CD10 into the onboard DAC and enables the DAC output pins (LN, LP, RN and RP). It should be noted that the DAC interface format (set by decoder register 3) must be set to 16-bit $1f_s$ mode, either I²S-bus or EIAJ format, for optimum DAC performance to be achieved. CD-ROM mode can also be used if interpolation is not required.

When using this mode, the serial data output pins for interfacing with an external DAC (SCLK, WCLK, DATA and EF) are set to high-impedance.

7.8.1.2 Loopback external data into onboard DAC

The onboard DAC can also be set to accept serial data inputs from an external source, e.g. an Electronic Shock Absorption (ESA) IC. This is known as loopback mode and is enabled by setting shadow register 7 to XX01. This enables the serial data output pins (SCLK, WCLK, DATA and EF) so that data can be routed from the SAA7325 to an external ESA system (or external DAC). The serial data from an external ESA IC can then also be input to the onboard DAC on the SAA7325 by utilising the serial data input interface (SCLI, SDI and WCLI).

In this mode, a wide range of data formats to the external ESA IC can be programmed as shown in Table 5. However, the serial input on the SAA7325 will always expect the input data from the ESA IC to be 16 bit $1f_s$ and the same data format, either I²S-bus or EIAJ, as the serial output format (set by decoder register 3).

7.8.2 EXTERNAL DAC INTERFACE

Audio data from the SAA7325 decoder can be sent to an external DAC, identical to the SAA737x series. This is similar to the 'loopback' mode, but in this case the internal DAC outputs can be held at zero. i.e. shadow register 7 is set to XX00. The SAA7325 is compatible with a wide range of external DACs. Eleven formats are supported and are given in Table 5. Figures 12 and 13 show the Philips I²S-bus and the EIAJ data formats respectively. When the decoder is operated in lock-to-disc mode, the SCLK frequency is dependent on the disc speed factor 'd'.

All formats are MSB first and f_s is (44.1 \times n) kHz. The polarity of the WCLK and the data can be inverted; selectable by decoder register 7. It should be noted that EF is only a defined output in CD-ROM and 1f_s modes.

When using an external DAC (or when using the onboard DAC in non-loopback mode), the serial data inputs to the onboard DAC (SCLI, SDI and WCLI) should be left unconnected.

REGISTER 3	SAMPLE FREQUENCY	NUMBER OF BITS	SCLK (MHz)	FORMAT	INTERPOLATION
1010	f _s	16	2.1168	CD-ROM (I ² S-bus)	no
1011	f _s	16	2.1168	CD-ROM (EIAJ)	no
1110	f _s	16/18 ⁽¹⁾	2.1168	Philips I ² S-bus 16/18 bits ⁽¹⁾	yes
0010	fs	16	2.1168	EIAJ 16 bits	yes
0110	f _s	18	2.1168	EIAJ 18 bits	yes
0000	4f _s	16	8.4672	EIAJ 16 bits	yes
0100	4f _s	18	8.4672	EIAJ 18 bits	yes
1100	4f _s	18	8.4672	Philips I ² S-bus 18 bits	yes
0011	2f _s	16	4.2336	EIAJ 16 bits	yes
0111	2f _s	18	4.2336	EIAJ 18 bits	yes
1111	2f _s	18	4.2336	Philips I ² S-bus 18 bits	yes

Table 5 DAC interface formats

Note

1. In this mode the first 16 bits contain data, but if any of the fade, attenuate or de-emphasis filter functions are activated then the first 18 bits contain data.

1999 Jun 17 decoder with integrated Digital servo SCLK 15 14 DATA 1 0 15 14 1 0 processor and LEFT CHANNEL DATA (WCLK NORMAL POLARITY) WCLK EF LSB error flag MSB error flag LSB error flag MSB error flag (CD-ROM AND If MODES ONLY) DAC MBG424 Compact (CD10) Fig.12 Philips I²S-bus data format (16-bit word length shown). Disc DATA 0 17 17 0 LEFT CHANNEL DATA WCLK EF (CD-ROM AND If_s MODES ONLY) MSB error flag LSB error flag MSB error flag MBG423 SAA7325 Fig.13 EIAJ data format (18-bit word length shown).

Philips Semiconductors

Product specification

19

7.9 EBU interface

The bi-phase mark digital output signal at pin DOBM is in accordance with the format defined by the IEC958 specification. Three different modes can be selected via decoder register A:

- DOBM pin held LOW
- Data taken before concealment, mute and fade (must always be used for CD-ROM modes)
- Data taken after concealment, mute and fade.

7.9.1 FORMAT

The digital audio output consists of 32-bit words ('subframes') transmitted in bi-phase mark code (two transitions for a logic 1 and one transition for a logic 0). Words are transmitted in blocks of 384. The formats are given in Table 6.

FUNCTION	BITS	DESCRIPTION
Sync	0 to 3	-
Auxiliary	4 to 7	not used; normally zero
Error flags	4	CFLG error and interpolation flags when selected by register A
Audio sample	8 to 27	first 4 bits not used (always zero) twos complement LSB = bit 12, MSB = bit 27
Validity flag	28	valid = logic 0
User data	29	used for subcode data (Q-to-W)
Channel status	30	control bits and category code
Parity bit	31	even parity for bits 4 to 30

Table 6 Format

Table 7 Description of table 6

FUNCTION	DESCRIPTION
Sync	The sync word is formed by violation of the bi-phase rule and therefore does not contain any data. Its length is equivalent to 4 data bits. The 3 different sync patterns indicate the following situations: sync B: start of a block (384 words), word contains left sample; sync M: word contains left sample (no block start) and sync W: word contains right sample.
Audio sample	Left and right samples are transmitted alternately.
Validity flag	Audio samples are flagged (bit 28 = 1) if an error has been detected but was uncorrectable. This flag remains the same even if data is taken after concealment.
User data	Subcode bits Q-to-W from the subcode section are transmitted via the user data bit. This data is asynchronous with the block rate.
Channel status	The channel status bit is the same for left and right words. Therefore a block of 384 words contains 192 channel status bits. The category code is always CD. The bit assignment is given in Table 8.

Table 8Bit assignment

FUNCTION	BITS	DESCRIPTION
Control	0 to 3	copy of CRC checked Q-channel control bits 0 to 3; bit 2 is logic 1 when copy permitted; bit 3 is logic 1 when recording has pre-emphasis
Reserved mode	4 to 7	always zero
Category code	8 to 15	CD: bit 8 = logic 1, all other bits = logic 0
Clock accuracy	28 to 29	set by register A; 10 = level I; 00 = level II; 01 = level III
Remaining	6 to 27 and 30 to 191	always zero

7.10 KILL circuit

The KILL circuit detects digital silence by testing for an all-zero or all-ones data word in the left or right channel prior to the digital filter. The output is switched to active LOW when silence has been detected for at least 270 ms, or if mute is active, or in CD-ROM modes. Two modes are available which can be selected by decoder register C:

- Pin KILL: KILL active LOW indicates silence detected on both left and right channels
- Pin KILL: KILL active LOW indicates silence detected on left channel. V3 active LOW indicates silence detected on right channel.

It should be noted that when mute is active or in CD-ROM modes the output(s) are switched LOW.

7.11 Audio features off

The audio features can be turned off (selected by decoder register E) which affects the following functions:

- Digital filter, fade, peak detector, KILL circuit (but outputs KILL, V3 still active) are disabled
- V5 (if selected to be the de-emphasis flag output) and the EBU outputs become undefined.

It should be noted that the EBU output should be set LOW prior to switching the audio features off and after switching audio features back on a full-scale command should be given.

7.12 The VIA interface

The SAA7325 has four pins that can be reconfigured for different applications. One of these pins, V2/V3, can be programmed as an input (V2) or as an output (V3). Control of the V2/V3 pin is via shadow register 3; see Table 9:

Selection of the V2/V3 pin does not affect the function programmed by decoder register C i.e. the V2/V3 pin can be changed from V2 to V3 function either before or after setting the desired function via decoder register 1100. Selection of, for instance, a V3 function while the V2/V3 pin is set to V2 will not affect the V2 functionality.

The functions of these versatile pins is identical to the SAA737x series. The functions of these versatile pins is programmed by decoder registers C and D, as shown in Table 10.

SHADEN	ADDRESS	REGISTER	DATA	FUNCTION	RESET
1	0011 (3H)	control of	0XXX	V2/V3 pin configured as V2 input	reset
		V2/V3 pin 1XXX		V2/V3 pin configured as V3 output (open-drain)	_

PIN NAME	PIN NUMBER	TYPE	REGISTER ADDRESS	REGISTER DATA	FUNCTION
V1	63	input	1100	XXX1	external off-track signal input
			_	XXX0	internal off-track signal used; input may be read via decoder status bit; selected via register 2
V2	36	input	-	-	input may be read via decoder status bit; selected via register 2
V3	36	output	1100	XX0X	KILL output for right channel
			-	X01X	output = 0
			-	X11X	output = 1
V4	61	output	1101	0000	4-line motor drive (using V4 and V5)
			_	XX01	Q-to-W subcode output
			-	XX10	output = 0
			_	XX11	output = 1
V5	62	output	1101	01XX	de-emphasis output (active HIGH)
			_	10XX	output = 0
			_	11XX	output = 1

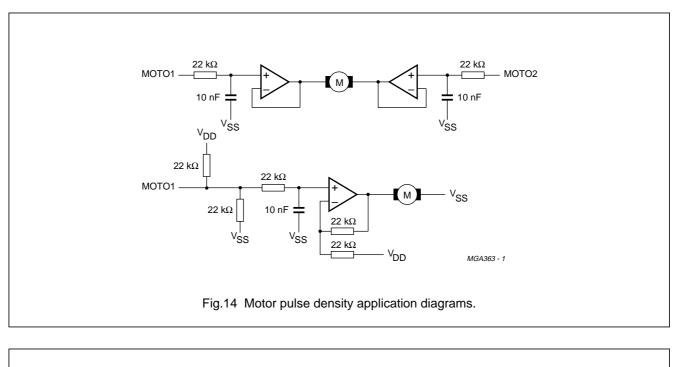
Table 10 Pin applications

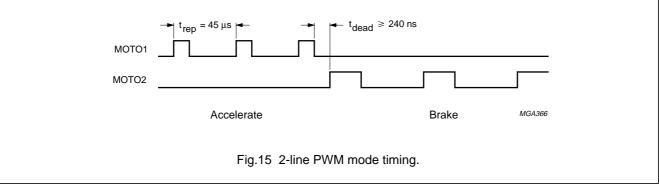
 Table 9
 V2/V3 configuration

7.13 Spindle motor control

7.13.1 MOTOR OUTPUT MODES

The spindle motor speed is controlled by a fully integrated digital servo. Address information from the internal ± 8 frame FIFO and disc speed information are used to calculate the motor control output signals. Several output modes, selected by decoder register 6, are supported:

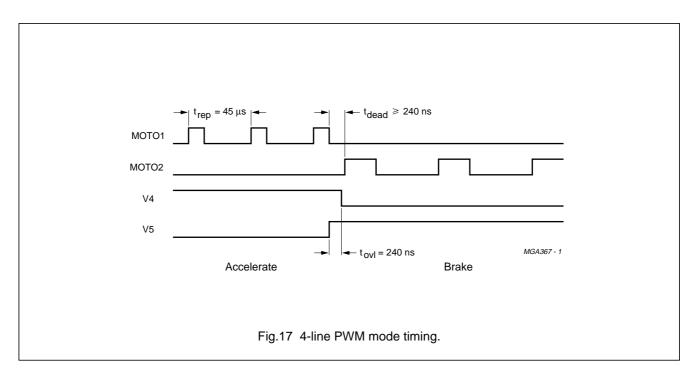

- Pulse density, 2-line (true complement output), 1 MHz sample frequency
- PWM output, 2-line, 22.05 kHz modulation frequency
- PWM output, 4-line, 22.05 kHz modulation frequency
- · CDV motor mode.


7.13.1.1 Pulse density output mode

In the pulse density mode the motor output pin (MOTO1) is the pulse density modulated motor output signal. A 50% duty factor corresponds with the motor not actuated, higher duty factors mean acceleration, lower mean braking. In this mode, the MOTO2 signal is the inverse of the MOTO1 signal. Both signals change state only on the edges of a $(1 \times n)$ MHz internal clock signal. Possible application diagrams are illustrated in Fig.14.


7.13.1.2 PWM output mode (2-line)

In the PWM mode the motor acceleration signal is put in pulse-width modulation form on the MOTO1 output. The motor braking signal is pulse-width modulated on the MOTO2 output. The timing is illustrated in Fig.15. A typical application diagram is illustrated in Fig.16.



Digital servo processor and Compact Disc decoder with integrated DAC (CD10)

7.13.1.3 PWM output mode (4-line)

Using two extra outputs from the versatile pins interface, it is possible to use the SAA7325 with a 4-input motor bridge. The timing is illustrated in Fig.17. A typical application diagram is illustrated in Fig.18.

<figure><image><image>

7.13.1.4 CDV/CAV output mode

In the CDV motor mode, the FIFO position will be put in pulse-width modulated form on the MOTO1 pin [carrier frequency $(300 \times d)$ Hz], where 'd' is the disc speed factor. The PLL frequency signal will be put in pulse-density modulated form (carrier frequency 4.23 MHz) on the MOTO2 pin. The integrated motor servo is disabled in this mode.

The PWM signal on MOTO1 corresponds to a total memory space of 20 frames, therefore the nominal FIFO position (half full) will result in a PWM output of 60%.

In the lock to-disc (CAV) mode the CDV motor mode is the only mode that can be used to control the motor.

7.13.2 SPINDLE MOTOR OPERATING MODES

The operation modes of the motor servo is controlled by decoder register 1 (see Table 11).

In the SAA7325 decoder there is an anti-windup mode for the motor servo, selected via decoder register 1. When the anti-windup mode is activated the motor servo integrator will hold if the motor output saturates.

7.13.2.1 Power limit

In start mode 1, start mode 2, stop mode 1 and stop mode 2, a fixed positive or negative voltage is applied to the motor. This voltage can be programmed as a percentage of the maximum possible voltage, via register 6, to limit current drain during start and stop.

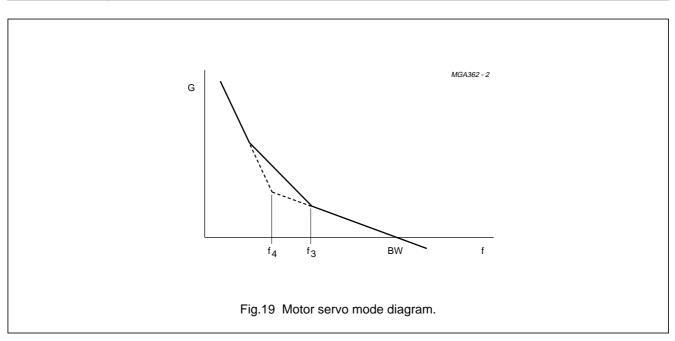
The following power limits are possible:

• 100% (no power limit), 75%, 50%, or 37% of maximum.

7.13.3 LOOP CHARACTERISTICS

The gain and crossover frequencies of the motor control loop can be programmed via decoder registers 4 and 5. The following parameter values are possible:

- Gains: 3.2, 4.0, 6.4, 8.0, 12.8, 16, 25.6 and 32
- Crossover frequency $f_4{:}~0.5$ Hz, 0.7 Hz, 1.4 Hz and 2.8 Hz
- Crossover frequency f_3 : 0.85 Hz, 1.71 Hz and 3.42 Hz.


SAA7325

7.13.4 FIFO OVERFLOW

If FIFO overflow occurs during Play mode (e.g.: as a result of motor rotational shock), the FIFO will be automatically reset to 50% and the audio interpolator tries to conceal as much as possible to minimize the effect of data loss.

Table 11 Operating modes

MODE	DESCRIPTION
Start mode 1	The disc is accelerated by applying a positive voltage to the spindle motor. No decisions are involved and the PLL is reset. No disc speed information is available for the microcontroller.
Start mode 2	The disc is accelerated as in start mode 1, however the PLL will monitor the disc speed. When the disc reaches 75% of its nominal speed, the controller will switch to jump mode. The motor status signals selectable via register 2 are valid.
Jump mode	Motor servo enabled but FIFO kept reset at 50%, integrator is held. The audio is muted but it is possible to read the subcode. It should be noted that in the CD-ROM modes the data, on EBU and the I ² S-bus is not muted.
Jump mode 1	Similar to jump mode but motor integrator is kept at zero. Used for long jumps where there is a large change in disc speed.
Play mode	FIFO released after resetting to 50%. Audio mute released.
Stop mode 1	Disc is braked by applying a negative voltage to the motor. No decisions are involved.
Stop mode 2	The disc is braked as in stop mode 1 but the PLL will monitor the disc speed. As soon as the disc reaches 12% (or 6%, depending on the programmed brake percentage, via register E) of its nominal speed, the MOTSTOP status signal will go HIGH and switch the motor servo to Off mode.
Off mode	Motor not steered.

7.14 Servo part

7.14.1 DIODE SIGNAL PROCESSING

The photo detector in conventional two-stage three-beam Compact Disc systems normally contains six discrete diodes. Four of these diodes (three for single foucault systems) carry the Central Aperture signal (CA) while the other two diodes (satellite diodes) carry the radial tracking information. The CA signal is processed into an HF signal (for the decoder function) and LF signal (information for the focus servo loop) before it is supplied to the SAA7325.

The analog signals from the central and satellite diodes are converted into a digital representation using Analog-to-Digital Converters (ADCs). The ADCs are designed to convert unipolar currents into a digital code. The dynamic range of the input currents is adjustable within a given range, which is dependent on the value of the external reference current (I_{ref}) resistor and the values programmed in shadow registers A and C. The magnitude of the signal currents for the central aperture diodes D1 to D4 and the radial diodes R1 and R2 are programmed separately to sixteen separate current ranges.

The maximum input currents with an external 30 k Ω reference current resistor are given in Table 10.

SHADEN BIT	SHADOW REGISTER	ADDRESS	DATA	FUNCTION	INITIAL
1	A signal	1010	0000	(0.042).I _{ref} = 1.006 μA (nom)	_
	magnitude		0001	(0.083).I _{ref} = 2.013 μA (nom)	_
	control for diodes D1 to D4		0010	(0.125).I _{ref} = 3.019 μA (nom)	_
			0011	(0.167).I _{ref} = 4.025 μA (nom)	_
			0100	(0.208).I _{ref} = 5.031 μA (nom)	-
			0101	(0.25).I _{ref} = 6.034 μA (nom)	_
			0110	(0.292).I _{ref} = 7.044 μA (nom)	_
			0111	(0.333).I _{ref} = 8.05 μA (nom)	_
			1000	(0.375).I _{ref} = 9.056 μA (nom)	_
			1001	(0.417).I _{ref} = 10.063 μA (nom)	_
			1010	(0.458).I _{ref} = 11.069 μA (nom)	-
			1011	(0.5).I _{ref} = 12.075 μA (nom)	-
			1100	(0.542).I _{ref} = 13.081 μA (nom)	_
			1101	(0.583).I _{ref} = 14.088 μA (nom)	_
			1110	(0.625).I _{ref} = 15.094 μA (nom)	_
			1111	(0.667).I _{ref} = 16.1 μA (nom)	reset

 Table 12
 Shadow register settings to control diode input current ranges

SAA7325

SHADEN BIT	SHADOW REGISTER	ADDRESS	DATA	FUNCTION	INITIAL
1	C signal	1100	0000	(0.042).I _{ref} = 1.006 μA (nom)	_
	magnitude		0001	(0.083).I _{ref} = 2.013 μA (nom)	_
	control for diodes R1 and R2		0010	(0.125).I _{ref} = 3.019 μA (nom)	_
	INT and INZ		0011	(0.167).I _{ref} = 4.025 μA (nom)	-
			0100	(0.208).I _{ref} = 5.031 μA (nom)	-
			0101	(0.25).I _{ref} = 6.034 μA (nom)	_
			0110	(0.292).I _{ref} = 7.044 μA (nom)	-
			0111	(0.333).I _{ref} = 8.05 μA (nom)	_
			1000	(0.375).I _{ref} = 9.056 μA (nom)	-
			1001	(0.417).I _{ref} = 10.063 μA (nom)	_
			1010	(0.458).I _{ref} = 11.069 μA (nom)	-
			1011	(0.5).I _{ref} = 12.075 μA (nom)	_
			1100	(0.542).I _{ref} = 13.081 μA (nom)	-
			1101	(0.583).I _{ref} = 14.088 μA (nom)	-
			1110	(0.625).I _{ref} = 15.094 μA (nom)	-
			1111	(0.667).I _{ref} = 16.1 μA (nom)	reset

7.14.2 SIGNAL CONDITIONING

The digital codes retrieved from the ADCs are applied to logic circuitry to obtain the various control signals. The signals from the central aperture diodes are processed to obtain a normalised focus error signal.

$$FE_n \ = \ \frac{D1-D2}{D1+D2} - \frac{D3-D4}{D3+D4}$$

where the detector set-up is assumed to be as shown in Fig.20.

In the event of single Foucault focusing method, the signal conditioning can be switched under software control such that the signal processing is as follows:

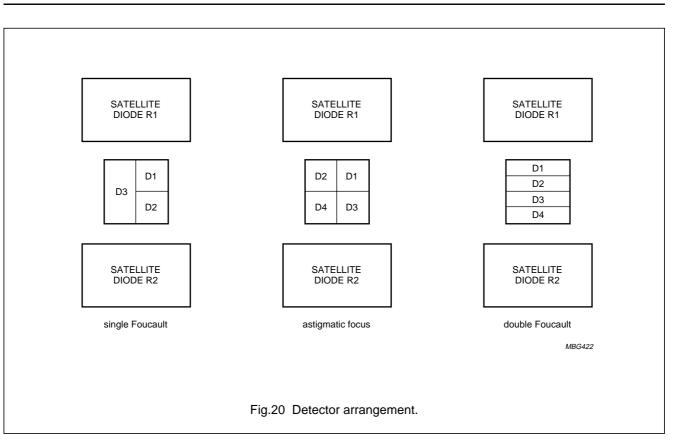
$$FE_n = 2 \times \frac{D1 - D2}{D1 + D2}$$

The error signal, FE_n , is further processed by a proportional integral and differential (PID) filter section.

A Focus OK (FOK) flag is generated by means of the central aperture signal and an adjustable reference level. This signal is used to provide extra protection for the Track-Loss (TL) generation, the focus start-up procedure and the dropout detection.

The radial or tracking error signal is generated by the satellite detector signals R1 and R2. The radial error signal can be formulated as follows:

 $RE_s = (R1 - R2) \times re_gain + (R1 + R2) \times re_offset$


where the index 's' indicates the automatic scaling operation which is performed on the radial error signal. This scaling is necessary to avoid non-optimum dynamic range usage in the digital representation and reduces the radial bandwidth spread. Furthermore, the radial error signal will be made free from offset during start-up of the disc.

The four signals from the central aperture detectors, together with the satellite detector signals generate a track position signal (TPI) which can be formulated as follows:

 $TPI = sign[(D1 + D2 + D3 + D4) - (R1 + R2) \times sum_gain]$

where the weighting factor sum_gain is generated internally by the SAA7325 during initialization.

Digital servo processor and Compact Disc decoder with integrated DAC (CD10)

7.14.3 FOCUS SERVO SYSTEM

7.14.3.1 Focus start-up

Five initially loaded coefficients influence the start-up behaviour of the focus controller. The automatically generated triangle voltage can be influenced by 3 parameters; for height (ramp_height) and DC offset (ramp_offset) of the triangle and its steepness (ramp_incr).

For protection against false focus point detections two parameters are available which are an absolute level on the CA-signal (CA_start) and a level on the FE_n signal (FE_start). When this CA level is reached the FOK signal becomes true.

If the FOK signal is true and the level on the FE_n signal is reached, the focus PID is enabled to switch on when the next zero crossing is detected in the FE_n signal.

7.14.3.2 Focus position control loop

The focus control loop contains a digital PID controller which has 5 parameters which are available to the user. These coefficients influence the integrating (foc_int), proportional (foc_lead_length, part of foc_parm3) and differentiating (foc_pole_lead, part of foc_parm1) action of the PID and a digital low-pass filter (foc_pole_noise, part of foc_parm2) following the PID. The fifth coefficient foc_gain influences the loop gain.

7.14.3.3 Dropout detection

This detector can be influenced by one parameter (CA_drop). The FOK signal will become false and the integrator of the PID will hold if the CA signal drops below this programmable absolute CA level. When the FOK signal becomes false it is assumed, initially, to be caused by a black dot.

7.14.3.4 Focus loss detection and fast restart

Whenever FOK is false for longer than approximately 3 ms, it is assumed that the focus point is lost. A fast restart procedure is initiated which is capable of restarting the focus loop within 200 to 300 ms depending on the programmed coefficients of the microcontroller.

7.14.3.5 Focus loop gain switching

The gain of the focus control loop (foc_gain) can be multiplied by a factor of 2 or divided by a factor of 2 during normal operation. The integrator value of the PID is corrected accordingly. The differentiating (foc_pole_lead) action of the PID can be switched at the same time as the gain switching is performed.

7.14.3.6 Focus automatic gain control loop

The loop gain of the focus control loop can be corrected automatically to eliminate tolerances in the focus loop. This gain control injects a signal into the loop which is used to correct the loop gain. Since this decreases the optimum performance, the gain control should only be activated for a short time (for example, when starting a new disc).

7.14.4 RADIAL SERVO SYSTEM

7.14.4.1 Level initialization

During start-up an automatic adjustment procedure is activated to set the values of the radial error gain (re_gain), offset (re_offset) and satellite sum gain (sum_gain) for TPI level generation. The initialization procedure runs in a radial open loop situation and is \leq 300 ms. This start-up time period may coincide with the last part of the motor start-up time period:

- Automatic gain adjustment: as a result of this initialization the amplitude of the RE signal is adjusted to within ±10% around the nominal RE amplitude
- Offset adjustment: the additional offset in RE due to the limited accuracy of the start-up procedure is less than ±50 nm
- TPI level generation: the accuracy of the initialization procedure is such that the duty factor range of TPI becomes 0.4 < duty factor < 0.6 (default duty factor = TPI HIGH/TPI period).

7.14.4.2 Sledge control

The microcontroller can move the sledge in both directions via the steer sledge command.

SAA7325

7.14.4.3 Tracking control

The actuator is controlled using a PID loop filter with user defined coefficients and gain. For stable operation between the tracks, the S-curve is extended over 0.75 of the track. On request from the microcontroller, S-curve extension over 2.25 tracks is used, automatically changing to access control when exceeding those 2.25 tracks.

Both modes of S-curve extension make use of a track-count mechanism. In this mode, track counting results in an 'automatic return-to-zero track', to avoid major music rhythm disturbances in the audio output for improved shock resistance. The sledge is continuously controlled, or provided with step pulses to reduce power consumption using the filtered value of the radial PID output. Alternatively, the microcontroller can read the average voltage on the radial actuator and provide the sledge with step pulses to reduce power consumption. Filter coefficients of the continuous sledge control can be preset by the user.

7.14.4.4 Access

The access procedure is divided into two different modes (see Table 13), depending on the requested jump size.

	Table	13	Access modes
--	-------	----	--------------

ACCESS TYPE	JUMP SIZE ⁽¹⁾	ACCESS SPEED
Actuator jump	1 - brake_distance	decreasing velocity
Sledge jump	brake_distance - 32768	maximum power to sledge ⁽¹⁾

Note

1. Microcontroller presettable.

The access procedure makes use of a track counting mechanism, a velocity signal based on a fixed number of tracks passed within a fixed time interval, a velocity set point calculated from the number of tracks to go and a user programmable parameter indicating the maximum sledge performance.

If the number of tracks remaining is greater than the brake_distance then the sledge jump mode should be activated or, the actuator jump should be performed. The requested jump size together with the required sledge breaking distance at maximum access speed defines the brake_distance value.

SAA7325

During the actuator jump mode, velocity control with a PI controller is used for the actuator. The sledge is then continuously controlled using the filtered value of the radial PID output. All filter parameters (for actuator and sledge) are user programmable.

In the sledge jump mode maximum power (user programmable) is applied to the sledge in the correct direction while the actuator becomes idle (the contents of the actuator integrator leaks to zero just after the sledge jump mode is initiated). The actuator can be electronically damped during sledge jump. The gain of the damping loop is controlled via the hold_mult parameter.

Fast track jumping circuitry can be enabled/disabled via the xtra_preset parameter.

7.14.4.5 Radial automatic gain control loop

The loop gain of the radial control loop can be corrected automatically to eliminate tolerances in the radial loop. This gain control injects a signal into the loop which is used to correct the loop gain. Since this decreases the optimum performance, the gain control should only be activated for a short time (for example, when starting a new disc).

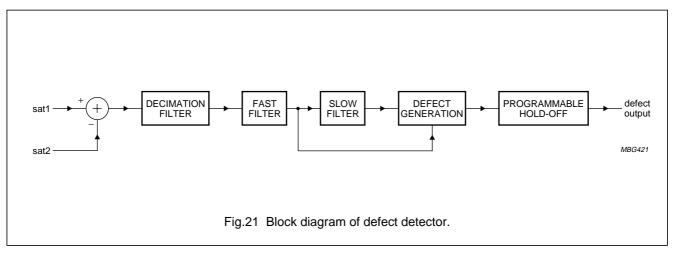
This gain control differs from the level initialization. The level initialization should be performed first. The disadvantage of using the level initialization without the gain control is that only tolerances from the front-end are reduced.

7.14.5 OFF-TRACK COUNTING

The track position signal (TPI) is a flag which is used to indicate whether the radial spot is positioned on the track, with a margin of $\pm 1/_4$ of the track-pitch. In combination with the radial polarity flag (RP) the relative spot position over the tracks can be determined.

These signals are, however, afflicted with some uncertainties caused by:

- Disc defects such as scratches and fingerprints
- The HF information on the disc, which is considered as noise by the detector signals.


In order to determine the spot position with sufficient accuracy, extra conditions are necessary to generate a Track Loss signal (TL) and an off-track counter value. These extra conditions influence the maximum speed and this implies that, internally, one of the following three counting states is selected:

- Protected state: used in normal play situations. A good protection against false detection caused by disc defects is important in this state.
- 2. Slow counting state: used in low velocity track jump situations. In this state a fast response is important rather than the protection against disc defects (if the phase relationship between TL and RP of $1/_{2\pi}$ radians is affected too much, the direction cannot then be determined accurately).
- 3. Fast counting state: used in high velocity track jump situations. Highest obtainable velocity is the most important feature in this state.

7.14.6 DEFECT DETECTION

A defect detection circuit is incorporated into the SAA7325. If a defect is detected, the radial and focus error signals may be zeroed, resulting in better playability. The defect detector can be switched off, applied only to focus control or applied to both focus and radial controls under software control (part of foc_parm1).

The defect detector (see Fig.21) has programmable set points selectable by the parameter defect_parm.

7.14.7 OFF-TRACK DETECTION

During active radial tracking, off-track detection has been realised by continuously monitoring the off-track counter value. The off-track flag becomes valid whenever the off-track counter value is not equal to zero. Depending on the type of extended S-curve, the off-track counter is reset after 0.75 extend or at the original track in the 2.25 track extend mode.

7.14.8 HIGH-LEVEL FEATURES

7.14.8.1 Interrupt mechanism and STATUS pin

The STATUS pin is an output which is active LOW, its output is selected by decoder register 7 to be either the decoder status bit (active LOW) selected by decoder register 2 (only available in 4-wire bus mode) or the interrupt signal generated by the servo part.

8 signals from the interrupt status register are selectable from the servo part via the interrupt_mask parameter. The interrupt is reset by sending the read high-level status command. The 8 signals are as follows:

- Focus lost: dropout of longer than 3 ms
- · Subcode ready
- Subcode absolute seconds changed
- Subcode discontinuity detected: new subcode time before previous subcode time, or more than 10 frames later than previous subcode time
- Radial error: during radial on-track, no new subcode frame occurs within time defined by the playwatchtime parameter; during radial jump, less than 4 tracks have been crossed during time defined by the jumpwatchtime parameter
- Autosequencer state change
- Autosequencer error
- Subcode interface blocked: the internal decoder interface is being used.

It should be noted that if the STATUS pin output is selected via decoder register 2 and either the microcontroller writes a different value to decoder register 2 or the decoder interface is enabled then the STATUS output will change.

7.14.8.2 Decoder interface

The decoder interface allows decoder registers 0 to F to be programmed and subcode Q-channel data to be read via servo commands. The interface is enabled/disabled by the preset latch command (and the xtra_preset parameter).

7.14.8.3 Automatic error handling

Three Watchdogs are present:

- Focus: detects focus drop out of longer than 3 ms, sets focus lost interrupt, switches off radial and sledge servos, disables drive to disc motor
- Radial play: started when radial servo is in on-track mode and a first subcode frame is found; detects when maximum time between two subcode frames exceeds time set by playwatchtime parameter; then sets radial error interrupt, switches radial and sledge servos off, puts disc motor in jump mode
- Radial jump: active when radial servo is in long jump or short jump modes. Detects when the off-track counter value decreases by less than 4 tracks between two readings (time interval set by jumpwatchtime parameter); then sets radial jump error, switches radial and sledge servos off to cancel jump

The focus Watchdog is always active, the radial Watchdogs are selectable via the radcontrol parameter.

7.14.8.4 Automatic sequencers and timer interrupts

Two automatic sequencers are implemented (and must be initialized after power-on):

- Autostart sequencer: controls the start-up of focus, radial and motor
- Autostop sequencer: brakes the disc and shuts down servos.

When the automatic sequencers are not used it is possible to generate timer interrupts, defined by the time_parameter coefficient.

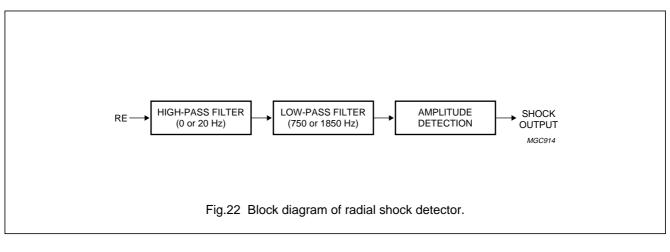
7.14.8.5 High-level status

The read high-level status command can be used to obtain the interrupt, decoder, autosequencer status registers and the motor start time. Use of the read high-level status command clears the interrupt status register, and re-enables the subcode read via a servo command.

7.14.9 DRIVER INTERFACE

The control signals (pins RA, FO and SL) for the mechanism actuators are pulse density modulated. The modulating frequency can be set to either 1.0584 (DSD mode) or 2.1168 MHz; controlled via the xtra_preset parameter. An analog representation of the output signals can be achieved by connecting a 1st-order low-pass filter to the outputs.

During reset (i.e. RESET pin is held LOW) the RA, FO and SL pins are high-impedance.


7.14.10 LASER INTERFACE

The LDON pin (open-drain output) is used to switch the laser off and on. When the laser is on, the output is high-impedance. The action of the LDON pin is controlled by the xtra_preset parameter; the pin is automatically driven if the focus control loop is active.

7.14.11 RADIAL SHOCK DETECTOR

The shock detector (see Fig.22) can be switched on during normal track following, and detects within an adjustable frequency whether disturbances in the radial spot position relative to the track exceed an adjustable level (controlled by shock_level). Every time the radial tracking error (RE) exceeds this level the radial control bandwidth is switched to twice its original bandwidth and the loop gain is increased by a factor of 4.

The shock detection level is adjustable in 16 steps from 0% to 100% of the traverse radial amplitude which is sent to an amplitude detection unit via an adjustable band-pass filter (controlled by sledge_parm1); lower corner frequency can be set at either 0 or 20 Hz, and upper corner frequency at 750 or 1850 Hz. The shock detector is switched off automatically during jump mode.

7.15 Microcontroller interface

Communication on the microcontroller interface can be set-up in two different modes:

- 4-wire bus mode: protocol compatible with SAA7345 (CD6) and TDA1301 (DSIC2) where:
 - SCL = serial clock
 - SDA = serial data
 - RAB = R/W control and data strobe (active HIGH) for writing to decoder registers 0 to F, reading status bit selected via decoder register 2 and reading Q-channel subcode
 - SILD = R/W control and data strobe (active LOW) for servo commands.

- I²C-bus mode: I²C-bus protocol where SAA7325 behaves as slave device, activated by setting RAB = HIGH and SILD = LOW where:
 - I²C-bus slave address (write mode) = 30H
 - I²C-bus slave address (read mode) = 31H
 - Maximum data transfer rate = 400 kbits/s.

It should be noted that only servo commands can be used therefore, writing to decoder registers 0 to F, reading decoder status and reading Q-channel subcode data must be performed by servo commands.

Digital servo processor and Compact Disc decoder with integrated DAC (CD10)

7.15.1 MICROCONTROLLER INTERFACE (4-WIRE BUS MODE)

7.15.1.1 Writing data to registers 0 to F

The sixteen 4-bit programmable configuration registers, 0 to F (see Table 14), can be written to via the microcontroller interface using the protocol shown in Fig.23.

It should be noted that SILD must be held HIGH; A3 to A0 identifies the register number and D3 to D0 is the data; the data is latched into the register on the LOW-to-HIGH transition of RAB.

7.15.1.2 Writing repeated data to registers 0 to F

The same data can be repeated several times (e.g. for a fade function) by applying extra RAB pulses as shown in Fig.24. It should be noted that SCL must stay HIGH between RAB pulses.

7.15.1.3 Reading decoder status information on SDA

There are several internal status signals, selected via register 2, which can be made available on the SDA line:

SUBQREADY-I: LOW if new subcode word is ready in Q-channel register

MOTSTART1: HIGH if motor is turning at 75% or more of nominal speed

MOTSTART2: HIGH if motor is turning at 50% or more of nominal speed

MOTSTOP: HIGH if motor is turning at 12% or less of nominal speed; can be set to indicate 6% or less (instead of 12% or less) via register E

PLL lock: HIGH if sync coincidence signals are found

V1: follows input on pin V1

V2: follows input on pin V2

MOTOR-OV: HIGH if the motor servo output stage saturates

FIFO-OV: HIGH if FIFO overflows

SHOCK: MOTSTART2 + PLL Lock + MOTOR-OV + FIFO-OV + servo interrupt signal + OTD (HIGH if shock detected)

LA-SHOCK: latched SHOCK signal.

The status read protocol is shown in Fig.25. It should be noted that SILD must be held HIGH.

7.15.1.4 Reading Q-channel subcode

To read the Q-channel subcode direct in the 4-wire bus mode, the SUBQREADY-I signal should be selected as the status signal. The subcode read protocol is illustrated in Fig.26.

It should be noted that SILD must be held HIGH; after subcode read starts, the microcontroller may take as long as it wants to terminate the read operation. When enough subcode has been read (1 to 96 bits), terminate reading by pulling RAB LOW.

Alternatively, the Q-channel subcode can be read using a servo command as follows:

- Use the read high-level status command to monitor the subcode ready signal
- Send the read subcode command, and read the required number of bytes (up to 12)
- Send the read high-level status command; to re-enable the decoder interface.

7.15.1.5 Behaviour of the SUBQREADY-I signal

When the CRC of the Q-channel word is good, and no subcode is being read, the SUBQREADY-I status signal will react as shown in Fig.27. When the CRC is good and the subcode is being read, the timing in Fig.28 applies.

If t_1 (SUBQREADY-I status LOW to end of subcode read) is below 2.6/n ms, then $t_2 = 13.1/n$ ms (i.e. the microcontroller can read all subcode frames if it completes the read operation within 2.6/n ms after the subcode is ready). If these criteria are not met, it is only possible to guarantee that t_3 will be below 26.2/n ms (approximately).

If subcode frames with failed CRCs are present, the t_2 and t_3 times will be increased by 13.1/n ms for each defective subcode frame.

It should be noted that in the lock-to-disc mode 'n' is replaced by 'd', which is the disc speed factor.

7.15.1.6 Write servo commands

A write data command is used to transfer data (a number of bytes) from the microcontroller, using the protocol shown in Fig.29. The first of these bytes is the command byte and the following are data bytes; the number (between 1 and 7) depends on the command byte.

It should be noted that RAB must be held LOW; the command or data is interpreted by the SAA7325 after the HIGH-to-LOW transition of SILD; there must be a minimum time of 70 μ s between SILD pulses.

7.15.1.7 Writing repeated data in servo commands

The same data byte can be repeated by applying extra SILD pulses as illustrated in Fig.30. SCL must be HIGH between the SILD pulses.

7.15.1.8 Read servo commands

A read data command is used to transfer data (status information) to the microcontroller, using the protocol shown in Fig.31. The first byte written determines the type of command. After this byte a variable number of bytes can be read. It should be noted that RAB must be held LOW; after the end of the command byte (LOW-to-HIGH transition on SILD) there must be a delay of 70 µs before reading data is started (i.e. the next HIGH-to-LOW transition on SILD); there must be a minimum time of 70 µs between SILD pulses.

7.15.2 MICROCONTROLLER INTERFACE (I²C-BUS MODE)

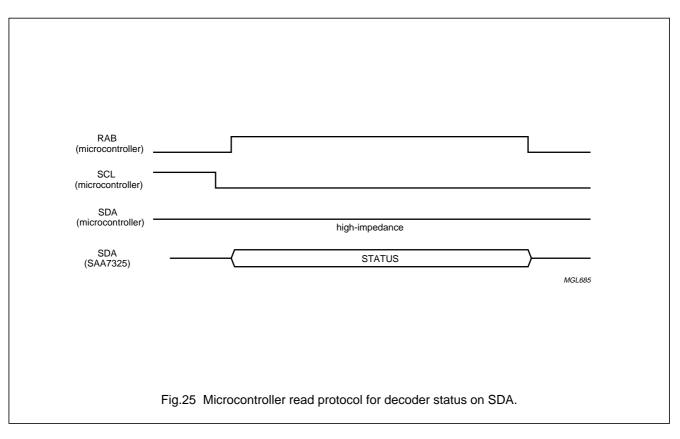
Bytes are transferred over the interface in groups (i.e. servo commands) of which there are two types: write data commands and read data commands.

The sequence for a write data command (that requires 3 data bytes) is as follows:

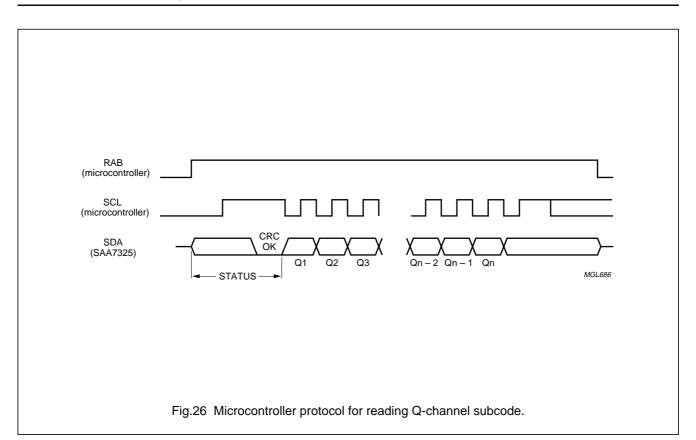
- 1. Send START condition
- 2. Send address 30H (write)
- 3. Write command byte
- 4. Write data byte 1
- 5. Write data byte 2
- 6. Write data byte 3
- 7. Send STOP condition.

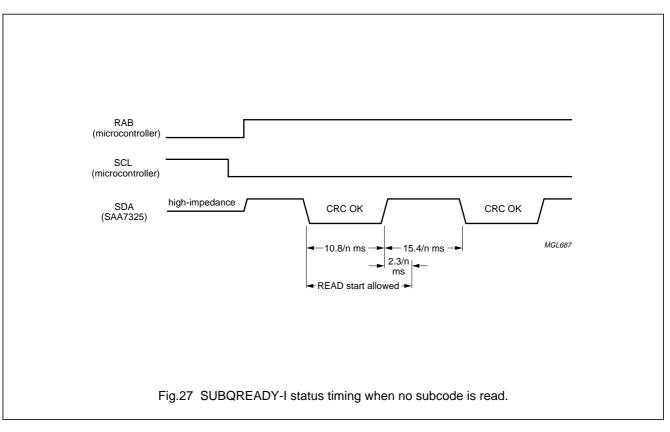
It should be noted that more than one command can be sent in one write sequence.

The sequence for a read data command (that reads 2 data bytes) is as follows:

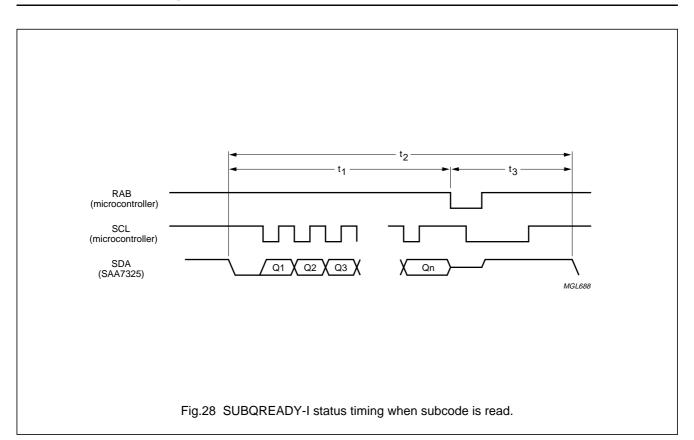

- 1. Send START condition
- 2. Send address 30H (write)
- 3. Write command byte
- 4. Send STOP condition
- 5. Send START condition
- 6. Send address 31H (read)
- 7. Read data byte 1
- 8. Read data byte 2
- 9. Send STOP condition.

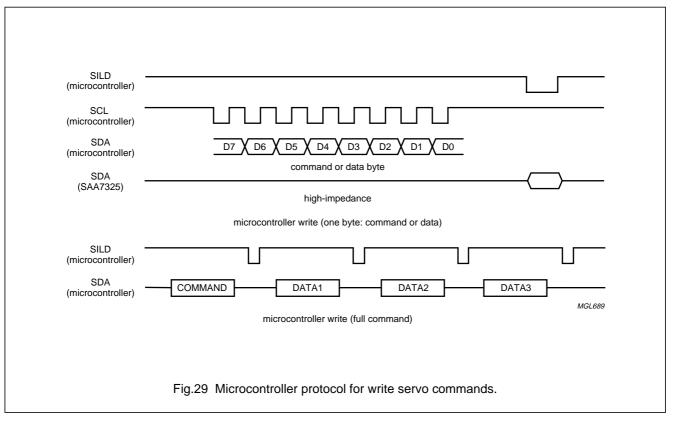
It should be noted that the timing constraints specified for the read and write servo commands must still be adhered to.

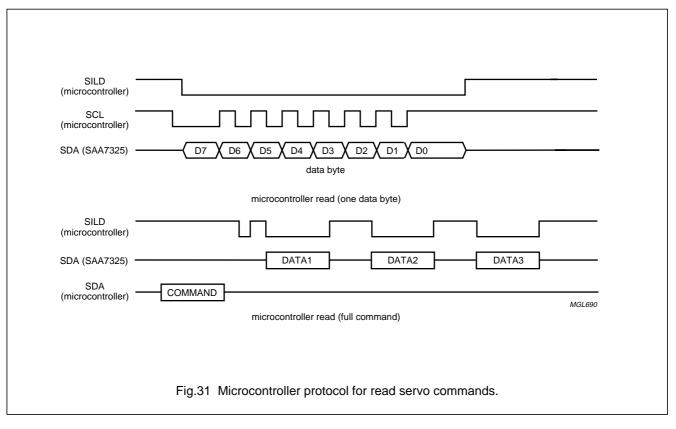

RAB (microcontroller)		
SCL (microcontroller)		
SDA (microcontroller)	A3 X A2 X A1 X A0 X D3 X D2 X D1 X D0	
SDA (SAA7325)	high-impedance	
	Fig.23 Microcontroller write protocol for registers 0 to F.	


Digital servo processor and Compact Disc decoder with integrated DAC (CD10)

RAB (microcontroller) SCL (microcontroller) SDA (microcontroller)	
SDA (SAA7325)	high-impedance
	Fig.24 Microcontroller write protocol for registers 0 to F (repeat mode).


Digital servo processor and Compact Disc decoder with integrated DAC (CD10)




SAA7325

Digital servo processor and Compact Disc decoder with integrated DAC (CD10)

SILD (microcontroller) SDA (microcontroller) COMMAND DATA1 MBG413 microcontroller write (full command)	
Fig.30 Microcontroller protocol for repeated data in write servo commands.	

SAA7325

7.15.3 DECODER REGISTERS AND SHADOW REGISTERS

To maintain compatibility with the SAA737x series, decoder registers 0 to F are identical to SAA7370. However, to control the extra functionality of SAA7325, a new set of registers called shadow registers have been implemented.

These are accessed by using the LSB of decoder register F. This bit is called SHADEN (shadow registers enable) on SAA7325. When this bit is set to logic 1 (i.e. decoder register F set to XXX1), any subsequent addresses will be decoded by the shadow registers. In fact, only four addresses are implemented as shadow registers; 3, 7, A and C. Any other addresses sent while SHADEN = 1 are invalid and have no effect. When SHADEN is set to logic 0 (decoder register F set to XXX0) all subsequent addresses are decoded by the main decoder registers again.

Access to decoder register F is always enabled so that SHADEN can be set or reset as required.

The SHADEN bit and subsequent shadow registers are programmed identically to the main decoder registers, i.e. they can be directly programmed when using SAA7325 in 4-wire mode or programmed via the servo interface when using 3-wire or I²C-bus modes.

The main decoder registers are shown in Table 14. The functions implemented using shadow registers are shown in Table 16.

7.15.4 SUMMARY OF FUNCTIONS CONTROLLED BY DECODER REGISTERS 0 TO F

Table 14 Registers 0 to F

REGISTER	ADDRESS	DATA	FUNCTION	INITIAL ⁽¹⁾
0	0000	0000	mute	reset
(fade and		0010	attenuate	-
attenuation)		0001	full-scale	_
		0100	step down	_
		0101	step up	_
1	0001	X000	motor off mode	reset
(motor mode)		X001	motor stop mode 1	_
		X010	motor stop mode 2	_
		X011	motor start mode 1	_
		X100	motor start mode 2	_
		X101	motor jump mode	_
		X111	motor play mode	_
		X110	motor jump mode 1	_
		1XXX	anti-windup active	-
		0XXX	anti-windup off	reset

SAA7325

Digital servo processor and Compact Disc decoder with integrated DAC (CD10)

REGISTER	ADDRESS	DATA	FUNCTION	INITIAL ⁽¹⁾
2	0010	0000	status = SUBQREADY-I	reset
(status control		0001	status = MOTSTART1	_
to servo part - not the		0010	status = MOTSTART2	_
STATUS pin)		0011	status = MOTSTOP	_
[)		0100	status = PLL lock	_
	Ī	0101	status = V1	_
		0110	status = V2	_
		0111	status = MOTOR-OV	_
	Ī	1000	status = FIFO overflow	_
		1001	status = shock detect	_
		1010	status = latched shock detect	_
		1011	status = latched shock detect reset	_
3	0011	1010	I ² S-bus; CD-ROM mode	_
DAC output)		1011	EIAJ; CD-ROM mode	_
		1100	I ² S-bus; 18-bit; 4f _s mode	reset
	T T	1111	I ² S-bus; 18-bit; 2f _s mode	_
		1110	I ² S-bus; 16-bit; f _s mode	_
		0000	EIAJ; 16-bit; 4f _s	_
		0011 EIAJ; 16-bit; 2f _s		_
		0010	EIAJ; 16-bit; f _s	_
	T T	0100	EIAJ; 18-bit; 4f _s	_
		0111	EIAJ; 18-bit; 2f _s	_
		0110	EIAJ; 18-bit; f _s	_
1	0100	X000	motor gain G = 3.2	reset
motor gain)		X001	motor gain G = 4.0	_
	T T	X010	motor gain G = 6.4	_
	T T	X011	motor gain G = 8.0	_
		X100	motor gain G = 12.8	_
		X101	motor gain G = 16.0	_
	T T	X110	motor gain G = 25.6	_
	Γ	X111	motor gain G = 32.0	_
		0XXX	disable comparator clock divider	reset
	-	1XXX	enable comparator clock divider; only if SELLPLL set HIGH	-
5	0101	XX00	motor $f_4 = 0.5$ Hz	reset
motor	Ī	XX01	motor $f_4 = 0.7$ Hz	_
pandwidth)	Ī	XX10	motor $f_4 = 1.4$ Hz	_
	Ī	XX11	motor $f_4 = 2.8$ Hz	_
	Ē	00XX	motor $f_3 = 0.85$ Hz	reset
		01XX	motor $f_3 = 1.71 \text{ Hz}$	_
	ŀ	10XX	motor $f_3 = 3.42$ Hz	_

REGISTER	ADDRESS	DATA	FUNCTION	INITIAL ⁽¹⁾
6	0110	XX00	motor power maximum 37%	reset
(motor output		XX01	motor power maximum 50%	_
configuration)		XX10	motor power maximum 75%	_
	Ē	XX11	motor power maximum 100%	_
		00XX	MOTO1, MOTO2 pins 3-state	reset
	l l	01XX	motor PWM mode	_
	Ē	10XX	motor PDM mode	_
		11XX	motor CDV mode	_
7	0111	XX00	interrupt signal from servo at STATUS pin	reset
(DAC output and status		XX10	status bit from decoder status register at STATUS pin	_
control)		X0XX	DAC data normal value	reset
		X1XX	DAC data inverted value	_
	F	0XXX	left channel first at DAC (WCLK normal)	reset
		1XXX	right channel first at DAC (WCLK inverted)	_
8 (PLL loop filter bandwidth)			see Table 15	_
9	1001	0011	PLL loop filter equalization	reset
(PLL	-	0001	PLL 30 ns over-equalization	_
equalization)		0010	PLL 15 ns over-equalization	_
		0100	PLL 15 ns under-equalization	-
		0101	PLL 30 ns under-equalization	_
A	1010	XX0X	EBU data before concealment	_
(EBU output)	Γ	XX1X	EBU data after concealment and fade	reset
	Γ	X0X0	level II clock accuracy (<1000 ppm)	reset
	Γ	X0X1	level I clock accuracy (<50 ppm)	_
	Γ	X1X0	level III clock accuracy (>1000 ppm)	_
	Γ	X1X1	EBU off - output low	_
	Γ	0XXX	flags in EBU off	reset
	Γ	1XXX	flags in EBU on	_
B (operating			33.8688 MHz crystal present, or 8.4672 MHz (or 16.9344 MHz) crystal with SELPLL set HIGH	reset
frequency)	F	01XX	16.9344 MHz crystal present	_
	F	0X00	standby 1: 'CD-STOP' mode	reset
	F	0X10	standby 2: 'CD-PAUSE' mode	_
	F	0X11	operating mode	_

REGISTER	ADDRESS	DATA	FUNCTION	INITIAL ⁽¹⁾	
С	1100	XXX1	external off-track signal input at V1	_	
(versatile pins interface)		XXX0	internal off-track signal used (V1 may be read via status)	reset	
		XX0X	kill-L at KILL output, kill-R at V3 output	_	
		001X V3 = 0; single KILL output		reset	
		011X	V3 = 1; single KILL output	_	
C	1101	0000	4-line motor (using V4 and V5)	_	
(versatile pins interface)		XX01	Q-to-W subcode at V4	_	
		XX10	V4 = 0	_	
		XX11	V4 = 1	reset	
	-	01XX	de-emphasis signal at V5, no internal de-emphasis filter	_	
		10XX	V5 = 0		
		11XX	V5 = 1	reset	
Ξ	1110	1110		audio features disabled	_
		01XX	audio features enabled	reset	
		XX0X	lock-to-disc mode disabled	reset	
		XX1X lock-to-disc mode enabled		lock-to-disc mode enabled	_
		XXX0	motor brakes to 12%	reset	
		XXX1 motor brakes to 6%		_	
-	1111	X0XX	subcode interface off	reset	
subcode		X1XX	subcode interface on	_	
nterface and shadow		0XXX	4-wire subcode	reset	
register	1XXX 3-wire subcode		3-wire subcode	_	
enable)		XXX0	SHADEN = 0; shadow registers not enabled; addresses will be decoded by main decoder registers	reset	
		XXX1	SHADEN = 1; shadow registers enabled; all subsequent addresses will be decoded by shadow registers, not decoder registers	_	

Note

1. The initial column shows the Power-on reset state.

SAA7325

Table 15 Loop filter bandwidth

				FUNCTION													
REGISTER	ADDRESS	DATA	LOOP BANDWIDTH (Hz)	INTERNAL BANDWIDTH (Hz)	LOW-PASS BANDWIDTH (Hz)	INITIAL ⁽¹⁾											
8	1000	0000	1640	525	8400	_											
(PLL loop filter		0001	3279	263	16800	_											
bandwidth)		0010	6560	131	33600	_											
		0100	1640	1050	8400	_											
		0101	3279	525	16800	_											
		0110	6560	263	33600	_											
		1000	1640	2101	8400	_											
		1001	3279	1050	16800	reset											
		1010	6560	525	33600	_											
													1100	1640	4200	8400	_
		1101	3279	2101	16800	_											
		1110	6560	1050	33600	_											

Note

1. The initial column shows the Power-on reset state.

7.15.5 SUMMARY OF FUNCTIONS CONTROLLED BY SHADOW REGISTERS

Table 16 Shadow	register settings
-----------------	-------------------

SHADEN BIT	SHADOW REGISTER	ADDRESS	DATA	FUNCTION	INITIAL
1	3	0011	XXX0	select CL4 on CL11/4 output	reset
	control of		XXX1	select CL11 on CL11/4 output	_
	versatile and clock pins		XX0X	enable CL11/4 output pin	reset
			XX1X	set CL11/4 output pin to high-impedance	-
			X0XX	enable CL16 output pin	reset
			X1XX	set CL16 output pin to high-impedance	-
			0XXX	V2/V3 pin configured as V2 input	reset
			1XXX	V2/V3 pin configured as V3 output (open-drain)	_
	7	0111	XXX0	hold onboard DAC outputs at zero	reset
	control of		XXX1	enable onboard DAC outputs	-
	onboard DAC		XX0X	use external DAC or route audio data into onboard DAC (loopback mode)	reset
			XX1X	route audio data into onboard DAC (non-loopback mode)	-
	7 servo		X1XX	use internal reference for servo reference voltage	reset
	reference pin 7, V _{RIN}		X0XX	use external reference for servo reference voltage	-

SHADEN BIT	SHADOW REGISTER	ADDRESS	DATA	FUNCTION	INITIAL
1	А	1010	0000	(0.042).I _{ref} = 1.006 μA (nom)	_
	signal		0001	(0.083).I _{ref} = 2.013 μA (nom)	-
	magnitude control for		0010	(0.125).I _{ref} = 3.019 μA (nom)	_
	diodes		0011	(0.167).I _{ref} = 4.025 μA (nom)	_
	D1 to D4		0100	(0.208).I _{ref} = 5.031 μA (nom)	_
			0101	(0.25).I _{ref} = 6.034 μA (nom)	_
			0110	(0.292).I _{ref} = 7.044 μA (nom)	_
			0111	(0.333).I _{ref} = 8.05 μA (nom)	_
			1000	(0.375).I _{ref} = 9.056 μA (nom)	_
			1001	(0.417).I _{ref} = 10.063 μA (nom)	_
			1010	(0.458).I _{ref} = 11.069 μA (nom)	_
			1011	(0.5).I _{ref} = 12.075 μA (nom)	_
			1100	(0.542).I _{ref} = 13.081 μA (nom)	_
			1101	(0.583).I _{ref} = 14.088 μA (nom)	_
			1110	(0.625).I _{ref} = 15.094 μA (nom)	-
			1111	(0.667).I _{ref} = 16.1 μA (nom)	reset
1	С	1100	0000	(0.042).I _{ref} = 1.006 μA (nom)	_
	Signal		0001	(0.083).I _{ref} = 2.013 μA (nom)	_
	magnitude control for		0010	(0.125).I _{ref} = 3.019 μA (nom)	_
	diodes		0011	(0.167).I _{ref} = 4.025 μA (nom)	_
	R1 and R2		0100	(0.208).I _{ref} = 5.031 μA (nom)	_
			0101	(0.25).I _{ref} = 6.034 μA (nom)	_
			0110	(0.292).I _{ref} = 7.044 μA (nom)	_
			0111	(0.333).I _{ref} = 8.05 μA (nom)	_
			1000	(0.375).I _{ref} = 9.056 μA (nom)	_
			1001	(0.417).I _{ref} = 10.063 μA (nom)	-
			1010	(0.458).I _{ref} = 11.069 μA (nom)	_
			1011	(0.5).I _{ref} = 12.075 μA (nom)	_
			1100	(0.542).I _{ref} = 13.081 μA (nom)	
			1101	$(0.583).I_{ref} = 14.088 \ \mu A \ (nom)$	_
			1110	$(0.625).I_{ref} = 15.094 \mu\text{A} (nom)$	
			1111	$(0.667).I_{ref} = 16.1 \mu\text{A} (\text{nom})$	reset

SAA7325

7.15.6 SUMMARY OF SERVO COMMANDS

A list of the servo commands are given in Table 17. These are fully compatible with SAA7370.

COMMANDS	CODE	BYTES	PARAMETERS	
Write commands				
Write_focus_coefs1	17H	7	<foc_parm3> <foc_int> <ramp_incr> <ramp_height> <ramp_offset> <fe_start> <foc_gain></foc_gain></fe_start></ramp_offset></ramp_height></ramp_incr></foc_int></foc_parm3>	
Write_focus_coefs2	27H	7	<defect_parm> <rad_parm_jump> <vel_parm2> <vel_parm1> <foc_parm1> <foc_parm2> <ca_drop></ca_drop></foc_parm2></foc_parm1></vel_parm1></vel_parm2></rad_parm_jump></defect_parm>	
Write_focus_command	33H	3	<foc_mask> <foc_stat> <shock_level></shock_level></foc_stat></foc_mask>	
Focus_gain_up	42H	2	<foc_gain> <foc_parm1></foc_parm1></foc_gain>	
Focus_gain_down	62H	2	<foc_gain> <foc_parm1></foc_parm1></foc_gain>	
Write_radial coefs	57H	7	<pre><rad_length_lead> <rad_int> <rad_parm_play> <rad_pole_noise> <rad_gain> <sledge_parm2> <sledge_parm_1></sledge_parm_1></sledge_parm2></rad_gain></rad_pole_noise></rad_parm_play></rad_int></rad_length_lead></pre>	
Preset_Latch	81H	1	<chip_init></chip_init>	
Radial_off	C1H	1	'1CH'	
Radial_init	C1H	1	'3CH'	
Short_jump	СЗН	3	<tracks_hi> <tracks_lo> <rad_stat></rad_stat></tracks_lo></tracks_hi>	
Long_jump	C5H	5	 	
Steer_sledge	B1H	1	<sledge_level></sledge_level>	
Preset_init	93H	3	<re_offset> <re_gain> <sum_gain></sum_gain></re_gain></re_offset>	
Write_decoder_reg ⁽¹⁾	D1H	1	<decoder_reg_data></decoder_reg_data>	
Write_parameter	A2H	2	<param_ram_addr> <param_data></param_data></param_ram_addr>	
Read commands	-			
Read_Q_subcode ⁽¹⁾⁽²⁾	OH	up to 12	<pre>2 <q_sub1 10="" to=""> <peak_l> <peak_r></peak_r></peak_l></q_sub1></pre>	
Read_status	70H	up to 5	<foc_stat> <rad_stat> <rad_int_lpf> <tracks_hi> <tracks_lo></tracks_lo></tracks_hi></rad_int_lpf></rad_stat></foc_stat>	
Read_hilevel_status ⁽³⁾	E0H	up to 4	<intreq> <dec_stat> <seq_stat> <motor_start_time></motor_start_time></seq_stat></dec_stat></intreq>	
Read_aux_status	F0H	up to 3	<re_offset> <re_gain> <sum_gain></sum_gain></re_gain></re_offset>	

Table 17 SAA7325 servo commands

Notes

- 1. These commands only available when internal decoder interface is enabled.
- 2. <peak_l> and <peak_r> bytes are clocked out LSB first.
- 3. Decoder status flag information in <dec_stat> is only valid when the internal decoder interface is enabled.

SAA7325

7.15.7 SUMMARY OF SERVO COMMAND PARAMETERS

Table 18 Servo command parameters

PARAMETER	RAM ADDRESS	AFFECTS	POR VALUE	DETERMINES
foc_parm_1	_	focus PID	_	end of focus lead
				defect detector enabling
foc_parm_2	_	focus PID	_	focus low-pass
				focus error normalising
foc_parm_3	_	focus PID	_	focus lead length
				minimum light level
foc_int	14H	focus PID	_	focus integrator crossover frequency
foc_gain	15H	focus PID	70H	focus PID loop gain
CA_drop	12H	focus PID	_	sensitivity of drop-out detector
ramp_offset	16H	focus ramp	_	asymmetry of focus ramp
ramp_height	18H	focus ramp	_	peak-to-peak value of ramp voltage
ramp_incr	_	focus ramp	_	slope of ramp voltage
FE_start	19H	focus ramp	_	minimum value of focus error
rad_parm_play	28H	radial PID	_	end of radial lead
rad_pole_noise	29H	radial PID	_	radial low-pass
rad_length_lead	1CH	radial PID	_	length of radial lead
rad_int	1EH	radial PID	_	radial integrator crossover frequency
rad_gain	2AH	radial PID	70H	radial loop gain
rad_parm_jump	27H	radial jump	_	filter during jump
vel_parm1	1FH	radial jump	_	PI controller crossover frequencies
vel_parm2	32H	radial jump	_	jump pre-defined profile
speed_threshold	48H	radial jump	_	maximum speed in fastrad mode
hold_mult	49H	radial jump	00H	electronic damping
				sledge bandwidth during jump
brake_dist_max	21H	radial jump	_	maximum sledge distance allowed in fast actuator steered mode
sledge_long_brake	58H	radial jump	FFH	brake distance of sledge
sledge_Umax	_	sledge	_	voltage on sledge during long jump
sledge_level	_	sledge	_	voltage on sledge when steered
sledge_parm_1	36H	sledge	_	sledge integrator crossover frequency
sledge_parm_2	17H	sledge	_	sledge low-pass frequencies
				sledge gain
				sledge operation mode
sledge_pulse1	46H	pulsed sledge	_	pulse width
sledge_pulse2	64H	pulsed sledge	_	pulse height
defect_parm	_	defect detector	_	defect detector setting
shock_level	_	shock detector	_	shock detector operation
playwatchtime	54H	Watchdog	_	radial on-track Watchdog time

PARAMETER	RAM ADDRESS	AFFECTS	POR VALUE	DETERMINES
jumpwatchtime	57H	Watchdog	_	radial jump Watchdog time-out
radcontrol	59H	Watchdog	_	enable/disable automatic radial off feature
chip_init	_	set-up	_	enable/disable decoder interface
xtra_preset	4AH	set-up	38H	laser on/off
				RA, FO and SL PDM modulating frequency
				fast jumping circuit on/off
cd6cmd	4DH	decoder interface	_	decoder part commands
interrupt_mask	53H	STATUS pin	_	enabled interrupts
seq_control	42H	autosequencer	_	autosequencer control
focus_start_time	5EH	autosequencer	_	focus start time
motor_start_time1	5FH	autosequencer	_	motor start 1 time
motor_start_time2	60H	autosequencer	_	motor start 2 time
radial_init_time	61H	autosequencer	_	radial initialization time
brake_time	62H	autosequencer	_	brake time
RadCmdByte	63H	autosequencer	_	radial command byte
osc_inc	68H	focus/radial	_	AGC control
		AGC		frequency of injected signal
phase_shift	67H	focus/radial AGC	_	phase shift of injected signal
level1	69H	focus/radial AGC	_	amplitude of signal injected
level2	6AH	focus/radial AGC	_	amplitude of signal injected
agc_gain	6CH	focus/radial AGC	_	focus/radial gain

SAA7325

8 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{DD}	supply voltage	note 1	-0.5	+3.6	V
V _{I(max)}	maximum input voltage				
	any input		-0.5	V _{DD} + 0.5	V
	pins SDA, SCL, RAB and SILD		-0.5	+5.5	V
Vo	output voltage (any output)		-0.5	+3.6	V
V _{DD(diff)}	difference between V_DDA, V_DDD and V_pos		-	±0.25	V
I _O	output current (continuous)		-	±20	mA
I _{I(d)}	DC input diode current (continuous)		-	±20	mA
V _{es}	electrostatic handling	note 2	-2000	+2000	V
		note 3	-200	+200	V
T _{amb}	ambient temperature		-10	+70	°C
T _{stg}	storage temperature		-55	+125	°C

Notes

- 1. All V_{DD} (and V_{pos}) connections and V_{SS} (and V_{neg}) connections must be made externally to the same power supply.
- 2. Equivalent to discharging a 100 pF capacitor via a 1.5 k Ω series resistor with a rise time of 15 ns.
- 3. Equivalent to discharging a 200 pF capacitor via a 2.5 μ H series inductor.

9 CHARACTERISTICS

 V_{DD} = 3.0 to 3.6 V; V_{SS} = 0 V; T_{amb} = -10 to +70 °C; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						·
V _{DD}	supply voltage		3.0	3.3	3.6	V
I _{DD}	supply current	V _{DD} = 3.3 V	-	20	-	mA
Bitstream DA	AC output (V _{DDD} = 3.3 V, V _{pos} :	= 3.3 V; V _{SS} = 0 V, V _{neg}	= 0 V; T _{amb} =	25 °C)		
DIFFERENTIAL	OUTPUTS: PINS LN, LP, RN AND	RP				
S/N	signal-to-noise ratio	note 1	-85	-90	-	dB
(THD + N)/S	total harmonic distortion plus noise-to-signal ratio	at 0 dB; note 1	-	-83	-80	dB
Servo and de	ecoder analog functions (V _{DD}	_A = 3.3 V; V _{SSA} = 0 V; T	_{amb} = 25 °C)			
REFERENCE G	ENERATOR: PIN I _{ref}					
V _{Iref}	reference voltage level		0.6	0.7245	0.8	V
I _{ref}	input reference current		-	24.15	-	μA
R _{Iref}	external resistor		-	30	-	kΩ

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Decoder ana	log front-end (V _{DDA} = 3.3 V; V	/ _{SSA} = 0 V; T _{amb} = 25 °	°C)			
COMPARATOR	INPUTS: PINS HFIN AND HFREF					
f _{clk}	clock frequency	note 2	8	_	70	MHz
V _{th(sw)}	switching voltage threshold		-	0.5V _{DD}	_	V
V _{HFIN}	input voltage level (HFIN)		_	1.0	_	V
Servo analog	g part (V _{DDA} = 3.3 V; V _{SSA} = 0	V; T _{amb} = 25 °C; R _{Iref}	= 30 k Ω)			
PINS D1 TO D	4; R1 AND R2					
I _{D(max)}	maximum input current for central diode input signal	note 3	4.025	-	16.1	μA
I _{R(max)}	maximum input current for satellite diode input signal	note 3	4.025	_	16.1	μA
V _{RIN}	internally generated reference voltage	note 4	-	0.75	-	V
	externally generated reference voltage applied to V _{RIN} (pin 7)	note 4	0.5	-	0.5V _{DD} + 0.1	V
(THD + N)/S	total harmonic distortion plus noise-to-signal ratio	at 0 dB; note 5	-	-50	-45	dB
S/N	signal-to-noise ratio		-	55	_	dB
PSRR	power supply ripple rejection at V_{DDA2}	note 6	-	45	-	dB
G _{tol}	gain tolerance	note 7	-20	0	+20	%
ΔG_v	variation of gain between channels		-	-	2	%
α _{cs}	channel separation		-	60	_	dB
Digital input	S	•		·		
	AND V1 (CMOS INPUT WITH PULI	UP RESISTOR AND HYS	STERESIS)			
V _{thr(sw)}	switching voltage threshold rising		-	-	0.8V _{DDD}	V
V _{thf(sw)}	switching voltage threshold falling		0.2V _{DDD}	-	-	V
V _{hys}	hysteresis voltage		1.35	1.65	_	V
R _{i(pu)}	input pull-up resistance	V _i = 0 V	_	160	_	kΩ
Ci	input capacitance		_	_	10	pF
t _{resL}	reset pulse width (active LOW)	RESET only	1	-	-	μs
PIN SELPLL (CMOS INPUT WITH PULL-UP RES	ISTOR)				
V _{IL}	LOW-level input voltage		-0.3	-	+0.3V _{DDD}	V
V _{IH}	HIGH-level input voltage		0.7V _{DDD}	-	V _{DDD} + 0.3	V
R _{i(pu)}	input pull-up resistance	V _i = 0 V	_	160	_	kΩ
Ci	input capacitance		_	-	10	pF

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
PINS TEST1,	TEST2 AND TEST3 (CMOS IN	PUT WITH PULL-DOWN RES	ISTORS)			
V _{IL}	LOW-level input voltage		-0.3	-	+0.3V _{DDD}	V
V _{IH}	HIGH-level input voltage		0.7V _{DDD}	_	V _{DDD} + 0.3	V
R _{i(pu)}	input pull-up resistance	$V_i = V_{DDD}$	-	160	-	kΩ
Ci	input capacitance		-	_	10	pF
PINS RCK, W	CLI, SDI AND SCLI (CMOS INF	UTS)				•
V _{IL}	LOW-level input voltage		-0.3	-	+0.3V _{DDD}	V
V _{IH}	HIGH-level input voltage		0.7V _{DDD}	_	V _{DDD} + 0.3	V
LI	input leakage current	$V_i = 0 - V_{DDD}$	-10	_	+10	μA
C _i	input capacitance		-	_	10	pF
PINS SCL, SI	LD AND RAB (5 V TOLERANT CI	MOS INPUTS)				•
V _{IL}	LOW-level input voltage		-0.3	_	+0.2V _{DDD}	V
V _{IH}	HIGH-level input voltage		0.8V _{DDD}	_	5.5	V
ILI	input leakage current	$V_i = 0 - V_{DDD}$	-10	_	+10	μA
C _i	input capacitance		_	-	10	pF
Digital outpu	uts				-	
PINS V4 AND	V5					
V _{OL}	LOW-level output voltage	I _{OL} = 4 mA	0	_	0.4	V
V _{OH}	HIGH-level output voltage	I _{OH} = -4 mA	V _{DDD} - 0.4	_	V _{DDD}	V
CL	load capacitance		-	_	100	pF
t _{o(r)}	output rise time	$C_L = 20 \text{ pF};$ 0.4 V - (V _{DDD} - 0.4)	_	-	10	ns
t _{o(f)}	output fall time	$C_L = 20 \text{ pF};$ (V _{DDD} - 0.4) - 0.4 V	_	-	10	ns
Open-drain	outputs					
PINS CFLG, S	STATUS, KILL AND LDON (OPE	N-DRAIN OUTPUT)				
V _{OL}	LOW-level output voltage	I _{OL} = 1 mA	0	-	0.4	V
OL	LOW-level output current		_	-	2	mA
CL	load capacitance		-	-	50	pF
o(f)	output fall time	$C_L = 50 \text{ pF};$ (V _{DDD} - 0.4) - 0.4 V	-	-	30	ns
3-state outp	uts					
PINS EF, SCL	K, WCLK, DATA, CL16, RA, F	O, SL, SBSY, SFSY, SU	B AND CL11/4			
V _{OL}	LOW-level output voltage	I _{OL} = 1 mA	0	_	0.4	V
v _{oн}	HIGH-level output voltage	$I_{OH} = -1 \text{ mA}$	V _{DDD} - 0.4	_	V _{DDD}	V
CL	load capacitance		_	-	35	pF
t _{o(r)}	output rise time	$C_{L} = 20 \text{ pF};$ 0.4 V to (V _{DDD} - 0.4)	_	-	15	ns

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	
t _{o(f)}	output fall time	$C_L = 20 \text{ pF};$ (V _{DDD} - 0.4) to 0.4 V	-	-	15	ns
I _{ZO}	output 3-state leakage current	$V_i = 0 - V_{DD}$	-10	-	+10	μA
(WHEN CL11	/4 IS CONFIGURED AS CL11 OUTP	UT)				•
t _{OH}	output HIGH time (relative to clock period)	V _o = 1.5 V	45	50	55	%
MOTO1, MO	TO2 AND DOBM			•		•
V _{OL}	LOW-level output voltage	I _{OL} = 4 mA	0	_	0.4	V
V _{OH}	HIGH-level output voltage	$I_{OH} = -4 \text{ mA}$	V _{DDD} – 0.4	_	V _{DD}	V
CL	load capacitance	-	-	_	100	pF
t _{o(r)}	output rise time	C _L = 20 pF; 0.4 V – (V _{DDD} – 0.4)	-	-	10	ns
t _{o(f)}	output fall time	$C_L = 20 \text{ pF};$ (V _{DDD} - 0.4) - 0.4 V	-	-	10	ns
I _{ZO}	output 3-state leakage current	$V_i = 0 - V_{DD}$	-10	-	+10	μA
Digital input	t/output	I		-1		
	TOLERANT CMOS INPUT/OPEN-D	RAIN I ² C-BUS OUTPUT)				
V _{IL}	LOW-level input voltage		-0.3	_	+0.2V _{DDD}	V
vi∟ ViH	HIGH-level input voltage		0.8V _{DDD}	_	5.5	V
I _{ZO}	3-state leakage current	$V_i = 0 - V_{DDD}$	-10	_	+10	μA
C _i	input capacitance		_	_	10	pF
V _{OL}	LOW-level output voltage	I _{OL} = 2 mA	0	_	0.4	V
I _{OL}	LOW-level output current		_	_	6	mA
	load capacitance		_	_	50	pF
t _{o(f)}	output fall time	C _L = 20 pF; 0.85V _{DDD} – 0.4	-	-	15	ns
PIN V2/V3 (C	MOS INPUT WITH PULL-UP RESIST	OR AND HYSTERESIS/OPI	I EN-DRAIN OUTPI	UT)	-1	
V _{thr(sw)}	switching voltage threshold rising		-	-	0.8V _{DDD}	V
V _{thf(sw)}	switching voltage threshold falling		0.2V _{DDD}	-	-	V
V _{hys}	hysteresis voltage		1.35	1.65	_	V
R _{i(pu)}	input pull-up resistance	V _i = 0 V	-	120	_	kΩ
Ci	input capacitance		-	_	10	pF
V _{OL}	LOW-level output voltage	I _{OL} = 1 mA	0	-	0.4	V
I _{OL}	LOW-level output current		-	_	1	mA
CL	load capacitance		-	_	25	pF
t _{o(f)}	output fall time	$C_L = 20 \text{ pF};$ (V _{DDD} - 0.4) - 0.4 V	-	-	15	ns

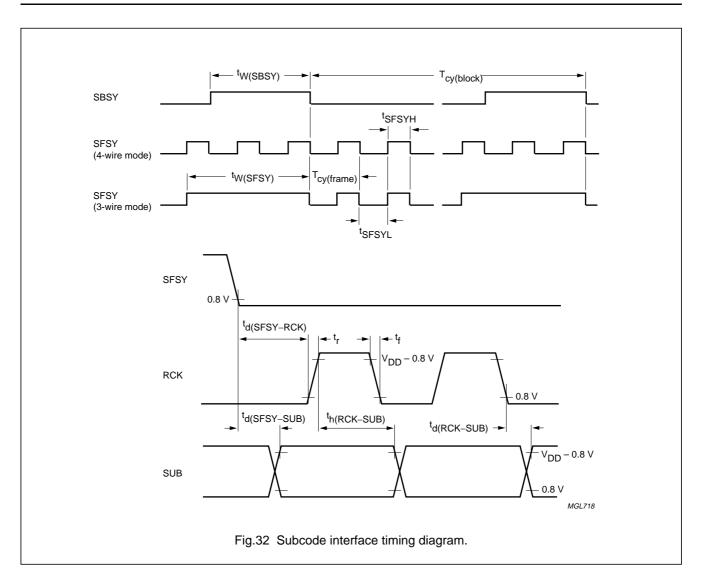
SAA7325

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Crystal oscil	lator		ł		ł	
INPUT: CRIN (EXTERNAL CLOCK)					
V _{IL}	LOW-level input voltage		-0.3	_	+0.2V _{DD}	V
V _{IH}	HIGH-level input voltage		0.8V _{DD}	_	V _{DD} + 0.3	V
ILI	input leakage current		-10	-	+10	μA
Ci	input capacitance		-	_	10	pF
OUTPUT: CRC	OUT; see Figs 3 and 4					
f _{xtal}	crystal frequency		8	8.4672	35	MHz
9 _m	mutual conductance at start-up		-	30	-	mA/V
C _{fb}	feedback capacitance		-	_	5	pF
Co	output capacitance		_	_	10	pF

Notes

- 1. Assumes use of external components as shown in the application diagram (Figs 38 or 39).
- 2. Highest clock frequency at which data slicer produces 1010 output in analog self-test mode.
- The maximum input current depends on the value of the external resistor connected to I_{ref} and the settings of shadow registers A and C:
 - a) With R_{Iref} = 30 kΩ, minimum I_{max} = I_{ref}/6 \Rightarrow (24.15 µA)/6 = 4.025 µA.
 - b) With R_{Iref} = 30 kΩ, maximum I_{max} = $2 \times I_{ref}/3 \Rightarrow 2/3 \times (24.15 \ \mu\text{A}) = 16.1 \ \mu\text{A}.$
- 4. V_{RIN} can be set to an internal source or an externally applied reference voltage using shadow register 7.
- 5. Measuring bandwidth: 200 Hz to 20 kHz, $f_{i(ADC)} = 1$ kHz.
- 6. $f_{ripple} = 1 \text{ kHz}, V_{ripple} = 0.5 \text{ V} (p-p).$
- 7. Gain of the ADC is defined as $G_{ADC} = f_{sys}/I_{max}$ (counts/ μA); thus digital output = $I_i \times G_{ADC}$ where:
 - a) Digital output = the number of pulses at the digital output in counts/s and I_i = the DC input current in μ A.
 - b) The maximum input current depends on R_{Iref} and on shadow registers A and C.
 - c) The gain tolerance is the deviation from the calculated gain.

SAA7325


10 OPERATING CHARACTERISTICS (SUBCODE INTERFACE TIMING)

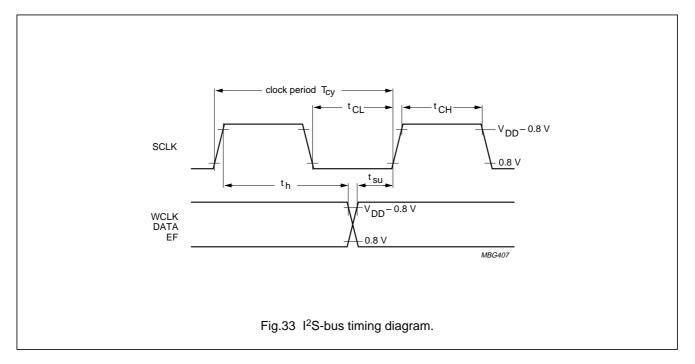
 V_{DD} = 3.0 to 3.6 V; V_{SS} = 0 V; T_{amb} = –10 to +70 °C; unless otherwise specified.

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
Subcode inter	face timing; d = 1 for normal operation; see Fig.	32; note 1		•	•
INPUT: PIN RCK					
t _{CLKH}	input clock HIGH time	2/d	4/d	6/d	μs
t _{CLKL}	input clock LOW time	2/d	4/d	6/d	μs
t _r	input clock rise time	-	-	80/d	ns
t _f	input clock fall time	-	-	80/d	ns
t _{d(SFSY-RCK)}	delay time SFSY to RCK	10/d	-	20/d	μs
OUTPUTS: PINS	SBSY, SFSY AND SUB ($C_L = 20 \text{ PF}$)	•			
T _{cy(block)}	block cycle time	12.0/d	13.3/d	14.7/d	ms
t _{W(SBSY)}	SBSY pulse width	-	-	300/d	μs
T _{cy(frame)}	frame cycle time	122/d	136/d	150/d	μs
t _{W(SFSY)}	SFSY pulse width (3-wire mode only)	-	-	366/d	μs
t _{SFSYH}	SFSY HIGH time	-	-	66/d	μs
t _{SFSYL}	SFSY LOW time	-	-	84/d	μs
t _{d(SFSY-SUB)}	delay time SFSY to SUB (P data) valid	-	-	1/d	μs
t _{d(RCK-SUB)}	delay time RCK falling to SUB	-	-	0	μs
t _{h(RCK-SUB)}	hold time RCK to SUB	-	-	0.7/d	μs

Note

1. In lock-to-disc mode, the subcode timing is directly related to the disc speed factor 'd'. In normal, single speed operation, d = 1.

SAA7325


11 OPERATING CHARACTERISTICS (I²S-BUS TIMING)

 V_{DD} = 3.0 to 3.6 V; V_{SS} = 0 V; T_{amb} = –10 to +70 °C; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I ² S-bus timing (d	d = 1 for normal operation)	; see Fig.33; note 1	•		•	•
CLOCK OUTPUT: PI	N SCLK (C _L = 20 pF)					
T _{cy}	output clock period	sample rate = fs	_	472.4/d	-	ns
		sample rate = 2f _s	_	236.2/d	-	ns
		sample rate = 4f _s	-	118.1/d	-	ns
t _{CH}	clock HIGH time	sample rate = fs	166/d	-	-	ns
		sample rate = 2f _s	83/d	-	-	ns
		sample rate = 4fs	42/d	-	-	ns
t _{CL}	clock LOW time	sample rate = fs	166/d	-	-	ns
		sample rate = 2f _s	83/d	-	-	ns
		sample rate = 4fs	42/d	-	-	ns
OUTPUTS: PINS W	CLK, DATA AND EF ($C_L = 20$	pF)			•	
t _{su}	set-up time	sample rate = fs	95/d	-	-	ns
		sample rate = 2f _s	48/d	-	-	ns
		sample rate = 4f _s	24/d	-	-	ns
t _h	hold time	sample rate = fs	95/d	_	-	ns
		sample rate = 2f _s	48/d	-	-	ns
		sample rate = 4f _s	24/d	-	-	ns

Note

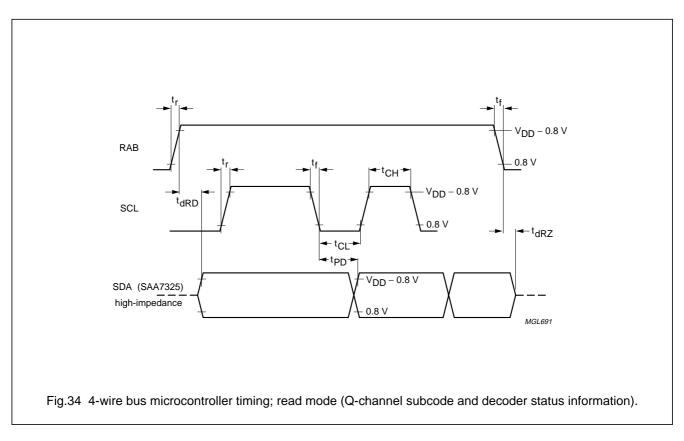
1. In lock-to-disk mode, the l^2S -bus timing is directly related to the disc speed factor 'd'. In normal operation, d = 1.

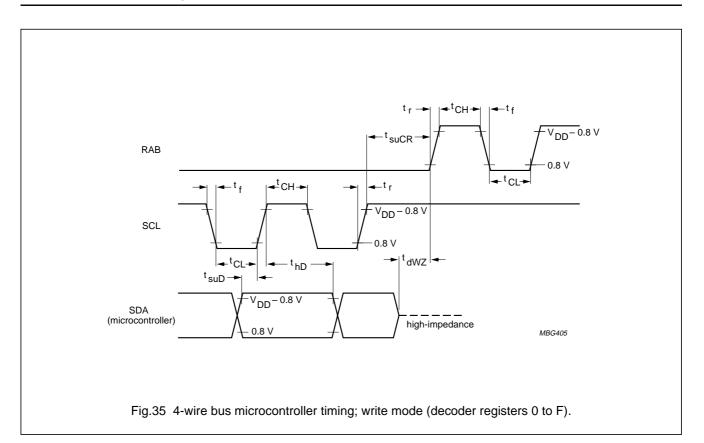
SAA7325

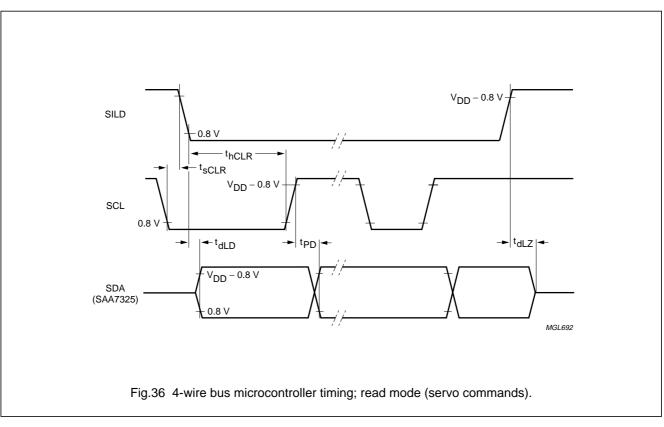
12 OPERATING CHARACTERISTICS (MICROCONTROLLER INTERFACE TIMING)

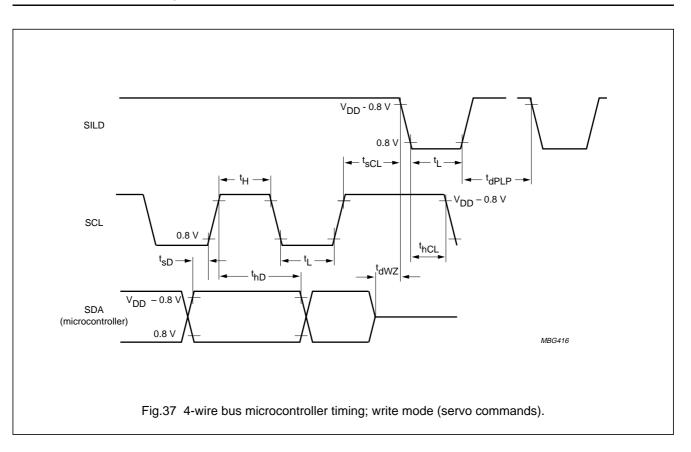
 V_{DD} = 3.0 to 3.6 V; V_{SS} = 0 V; T_{amb} = -10 to +70 °C; unless otherwise specified.

evmpor		CONDITIONS	NORM	AL MODE	LOCK-TC	D-DISC MODE	
SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	MIN.	MAX.	
	troller interface timing (4-v and decoder status); see F		-	ecoder regis	ters 0 to F; r	eading Q-char	nel
INPUTS SC	L AND RAB						
t _{CL}	input LOW time		500	_	2420	_	ns
t _{CH}	input HIGH time		500	-	2420	-	ns
t _r	rise time		-	480	-	480	ns
t _f	fall time		-	480	_	480	ns
READ MOD	E (C _L = 20 pF)				•		•
t _{dRD}	delay time RAB to SDA valid		-	50	-	50	ns
t _{PD}	propagation delay SCL to SDA		700	980	740	4820	ns
t _{dRZ}	delay time RAB to SDA high-impedance		-	50	-	50	ns
WRITE MOI	DE (C _L = 20 pF)			-			
t _{suD}	set-up time SDA to SCL	note 2	-700	_	-700	-	ns
t _{hD}	hold time SCL to SDA		-	980	-	4820	ns
t _{suCR}	set-up time SCL to RAB		260	-	1220	_	ns
t _{dWZ}	delay time SDA high-impedance to RAB		0	-	0	-	ns
Microcon	troller interface timing (4-	wire bus mode;	servo com	n ands) ; see F	- igs 36 and 3	7; notes 3	
INPUTS SC	L AND SILD						
tL	input LOW time		710	_	710	_	ns
t _H	input HIGH time		710	_	710	_	ns
t _r	rise time		_	240	_	240	ns
t _f	fall time		_	240	_	240	ns
READ MOD	E (C _L = 20 pF)						
t _{dLD}	delay time SILD to SDA valid		-	25	_	25	ns
t _{PD}	propagation delay SCL to SDA		-	950	_	950	ns
t _{dLZ}	delay time SILD to SDA high-impedance		-	50	-	50	ns
t _{sCLR}	set-up time SCL to SILD		480	_	480	_	ns
t _{hCLR}	hold time SILD to SCL		830	_	830	_	ns

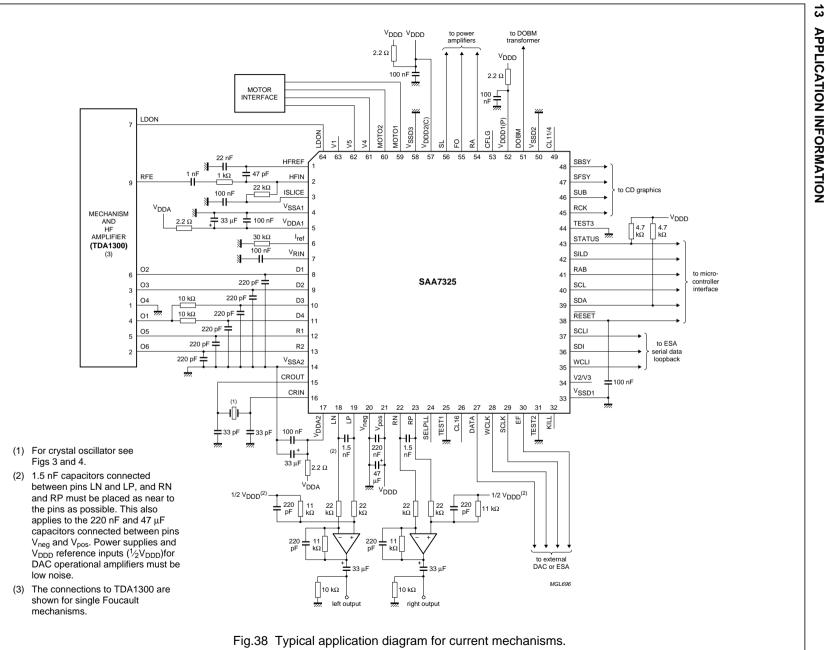

SAA7325


SYMBOL	PARAMETER	CONDITIONS	NORMA	L MODE	LOCK-TO-I	DISC MODE	
STIVIBUL	PARAMETER	CONDITIONS	MIN.	MAX.	MIN.	MAX.	UNIT
WRITE MOD	DE (C _L = 20 pF)				•		
t _{sD}	set-up time SDA to SCL		0	-	0	-	ns
t _{hD}	hold time SCL to SDA		950	-	950	-	ns
t _{sCL}	set-up time SCL to SILD		480	_	480	_	ns
t _{hCL}	hold time SILD to SCL		120	_	120	-	ns
t _{dPLP}	delay between two SILD pulses		70	-	70	-	μs
t _{dWZ}	delay time SDA high-impedance to SILD		0	-	0	-	ns


Notes


1. In lock-to-disc mode, the maximum data rate is lower when writing to decoder registers 0 to F, and reading Q-channel subcode and decoder status.

- 2. Negative set-up time means that the data may change after clock transition.
- 3. If a 16.9344 MHz crystal is used and SELPLL = 0 then the timings are divided-by-2 until the microcontroller has written X1XX to register B.

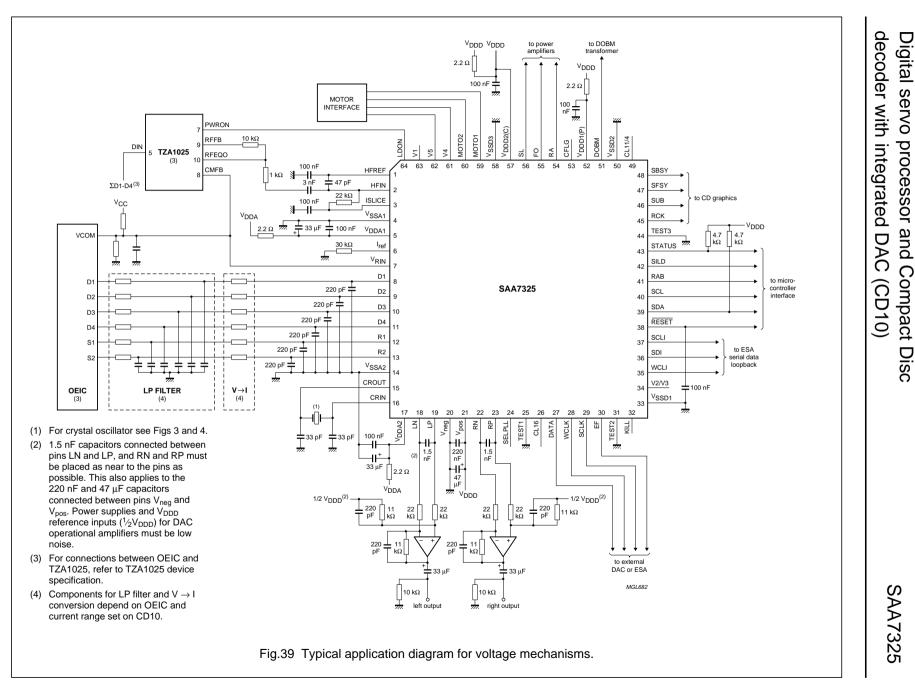


Philips Semiconductors

decoder with Digital servo processor integrated and DAC Compact (CD10) Disc

SAA7325

60

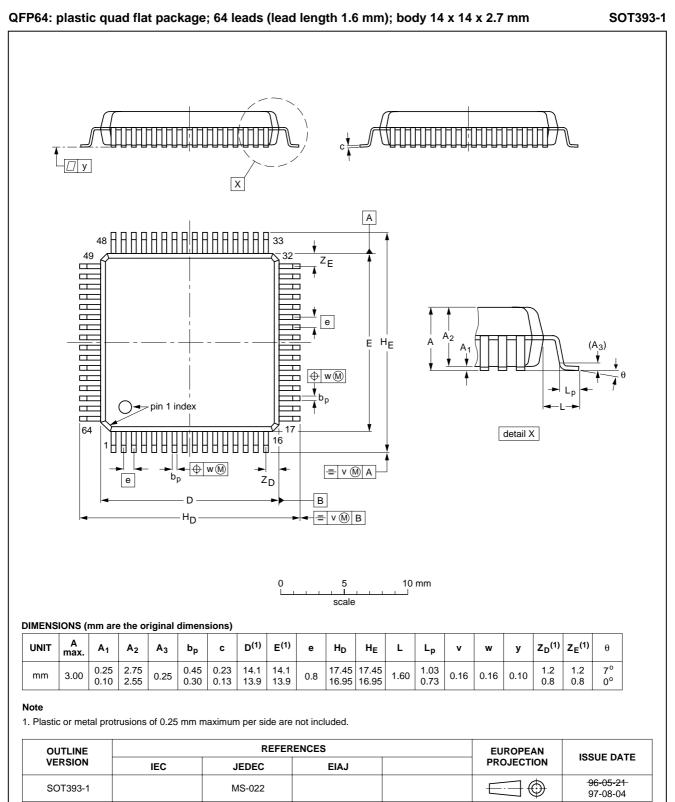

_

1999 Jun 17

Product specification

1999 Jun 17

_



Philips Semiconductors

<u>6</u>

Product specification

14 PACKAGE OUTLINE

15 SOLDERING

15.1 Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"Data Handbook IC26; Integrated Circuit Packages"* (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering is not always suitable for surface mount ICs, or for printed-circuit boards with high population densities. In these situations reflow soldering is often used.

15.2 Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 230 °C.

15.3 Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
 - smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

• For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

15.4 Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 $^\circ\text{C}.$

15.5 Suitability of surface mount IC packages for wave and reflow soldering methods

PACKAGE	SOLDERING METHOD				
PACKAGE	WAVE	REFLOW ⁽¹⁾			
BGA, SQFP	not suitable	suitable			
HLQFP, HSQFP, HSOP, HTSSOP, SMS	not suitable ⁽²⁾	suitable			
PLCC ⁽³⁾ , SO, SOJ	suitable	suitable			
LQFP, QFP, TQFP	not recommended ⁽³⁾⁽⁴⁾	suitable			
SSOP, TSSOP, VSO	not recommended ⁽⁵⁾	suitable			

Notes

- 1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
- 2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
- 3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- 4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- 5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.

SAA7325

16 DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
more of the limiting values of the device at these or at	accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or may cause permanent damage to the device. These are stress ratings only and operation any other conditions above those given in the Characteristics sections of the specification limiting values for extended periods may affect device reliability.
Application information	

Where application information is given, it is advisory and does not form part of the specification.

17 LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

18 PURCHASE OF PHILIPS I²C COMPONENTS

Purchase of Philips I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.

NOTES

NOTES

Philips Semiconductors – a worldwide company

Argentina: see South America Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 2 9805 4455, Fax. +61 2 9805 4466 Austria: Computerstr 6 A-1101 WIEN P.O. Box 213 Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773 Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 68 9211, Fax. +359 2 68 9102 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381, Fax. +1 800 943 0087 China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700 Colombia: see South America Czech Republic: see Austria Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V, Tel. +45 33 29 3333, Fax. +45 33 29 3905 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615 800, Fax. +358 9 6158 0920 France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 1 4099 6161, Fax. +33 1 4099 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 2353 60, Fax. +49 40 2353 6300 Hungary: see Austria India: Philips INDIA Ltd, Band Box Building, 2nd floor, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025, Tel. +91 22 493 8541, Fax. +91 22 493 0966 Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080 Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 02 67 52 2531, Fax. +39 02 67 52 2557 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381. Fax +9-5 800 943 0087 Middle East: see Italy

New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341 Pakistan: see Singapore Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474 Poland: UI. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327 Portugal: see Spain Romania: see Italy Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095 755 6918, Fax. +7 095 755 6919 Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762, Tel. +65 350 2538, Fax. +65 251 6500 Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 58088 Newville 2114, Tel. +27 11 471 5401, Fax. +27 11 471 5398 South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil, Tel. +55 11 821 2333. Fax. +55 11 821 2382 Spain: Balmes 22, 08007 BARCELONA, Tel. +34 93 301 6312, Fax. +34 93 301 4107 Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 5985 2000, Fax. +46 8 5985 2745 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2741 Fax. +41 1 488 3263 Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874 Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd. 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793 Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye, ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813 Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461 United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381, Fax. +1 800 943 0087 Uruguay: see South America

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,

Tel. +31 40 27 82785, Fax. +31 40 27 88399

Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11 62 5344, Fax.+381 11 63 5777

For all other countries apply to: Philips Semiconductors, International Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825

SCA66

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

© Philips Electronics N.V. 1999

545002/01/pp68

Date of release: 1999 Jun 17

Document order number: 9397 750 04958

Let's make things better.

Internet: http://www.semiconductors.philips.com

